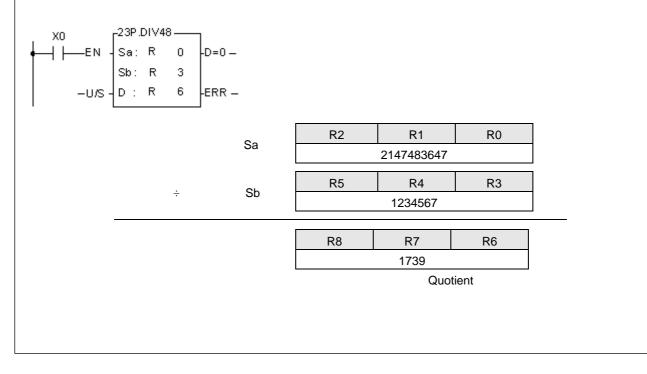
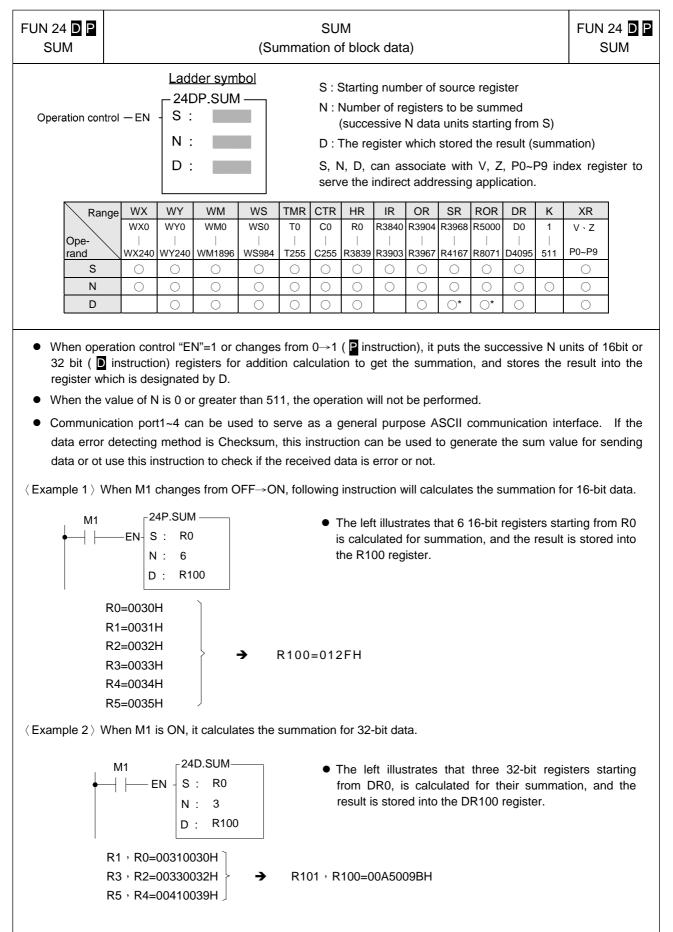
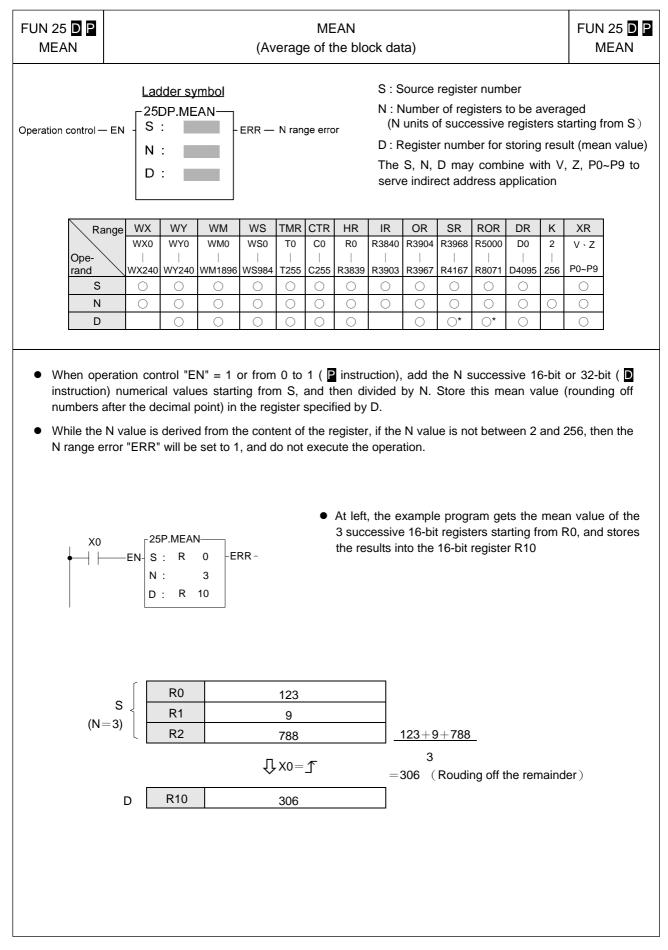

Chapter 7 Advanced Function Instructions

Flow Control Instructions I (FUN22)......7-1 **Arithmetical Operation Instructions Multiple Linear Conversion Logical Operation Instructions** (FUN37).....7-27 **Comparison Instructions** Data Movement Instructions I Shifting / Rotating Instructions **Code Conversion Instructions** Flow Control Instructions II I/O Instructions I Cumulative Timer Instructions Watchdog Timer Instructions High Speed Counting / Timing **Report Printing Instructions** (FUN95~98)7-93 ~ 7-98 Slow Up / Slow Down Instructions **Table Instructions** Matrix Instructions I/O Instructions II NC Positioning Instructions I (FUN140~143).....7-132 ~ 7-135 (FUN145~146).....7-136 ~ 7-137 Enable / Disable Instructions (FUN147~148).....7-138 ~ 7-139 NC Positioning Instructions II Communication Instructions (FUN150~151).....7-140 ~ 7-141 Date Movement Instructions II In Line Comparison Instructions (FUN170~175).....7-148 ~ 7-153 Other Instructions (FUN200~220)7-156 ~ 7-177 Floating Point Instructions

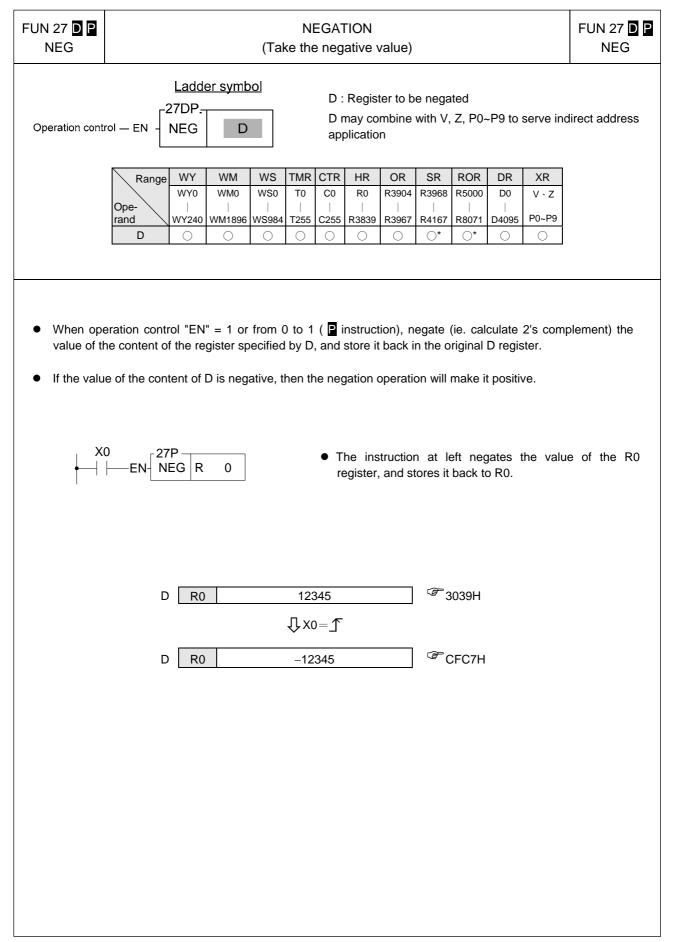
Flow Control Instruction I

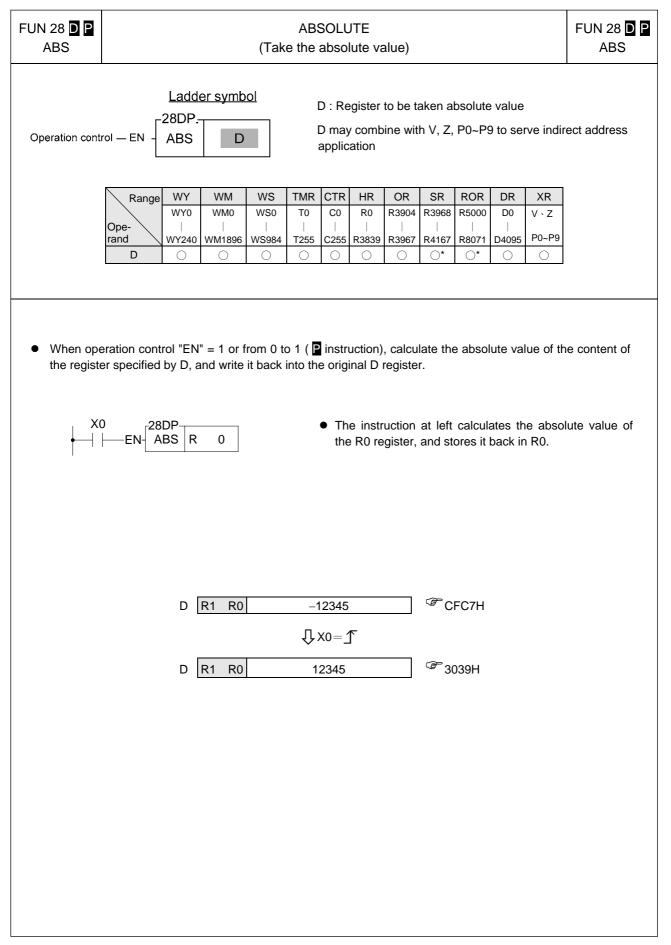


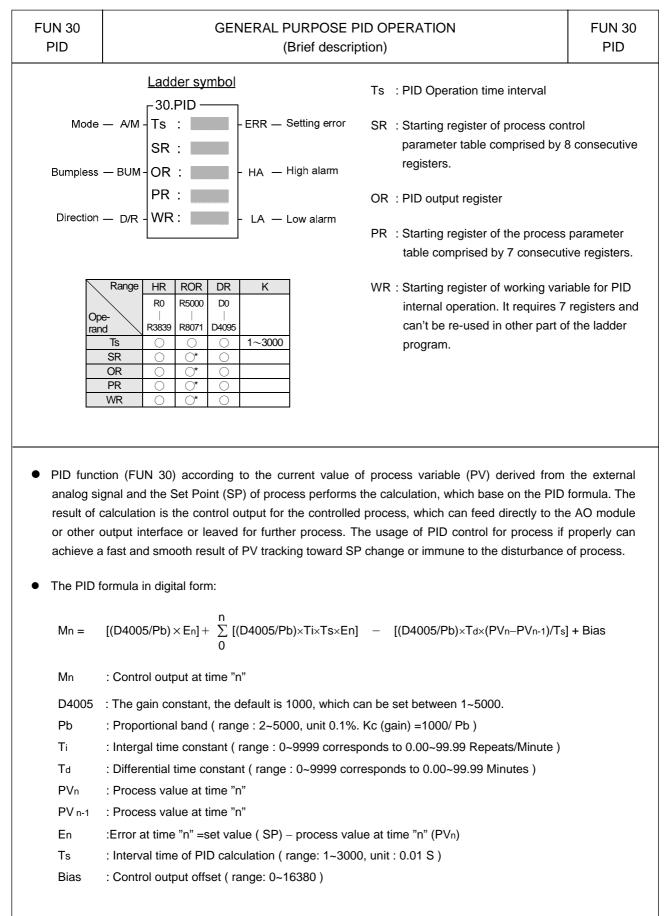

FUN 23 P DIV48			4	8-BIT	DIVIS	SION				FUN 23 P DIV48
Operation contro Unsign/Sigr	-23P.DI - EN - Sa : Sb :			— Quot — Divis		ł	Sb: D Sa,	Starting Starting result	g register of divider g register of divisor g register for storin (quotient) n combine V, Z, P0	g the division
		Range	HR	OR	SR	ROR	DR	XR		
		Ope- rand	R0 R3839		R3968 R4167		D0 D4095	V \ Z P0~P9		
		Sa	0	0	0	0	0	0		
		Sb	0	0	0	\bigcirc	0	\bigcirc		
		D	\bigcirc	\bigcirc	O*	0*	\bigcirc	\bigcirc		


- When operation control "EN"=1 or changes from 0→1 (pinstruction), will perform the 48 bits division operation. Dividend and divisor are each formed by three consecutive registers starting by Sa and Sb respectively. If the result is zero, 'D=0' output will be set to 1. If divisor is zero then the 'ERR' will be set to 1 and the resultant register will keep unchanged.
- All operands involved in this function are all 48 bits, so Sa, Sb and D are all comprised by 3 consecutive registers.

Example: 48-bit division

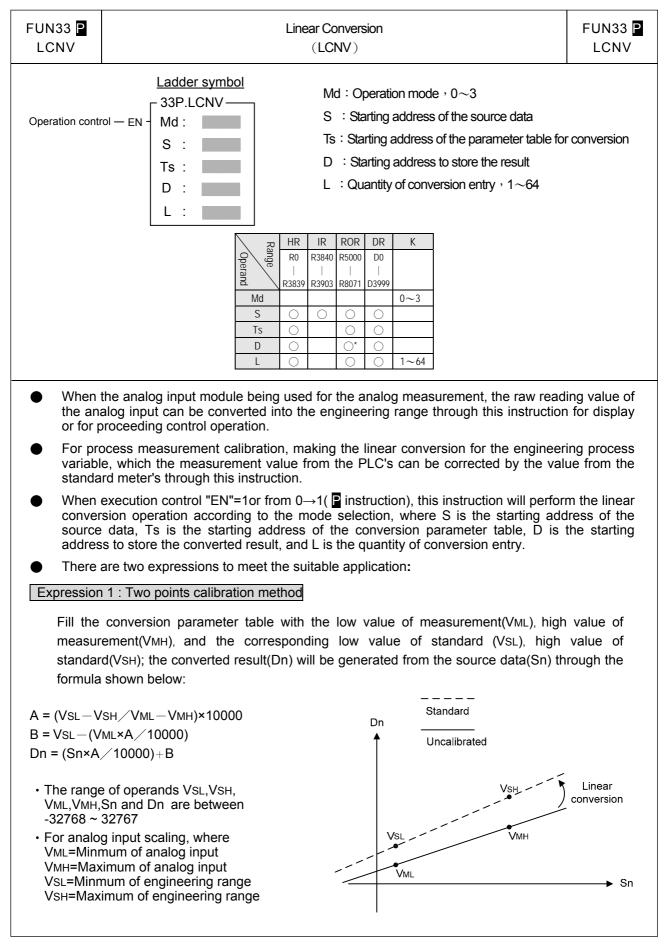

In this example dividend formed by register R2, R1, R0 will be divided by divisor formed by register R5, R4, R3. The quotient will store in R8, R7, and R6.





FUN 26 D P SQRT		SQUARE ROOT												FUN 26 SQRT	
Operation control -	– EN -		er symbo .SQRT-		R — S r	ange er	ror	D: (S, I	Registe (square	er for s root v comb	toring alue) ine wi	result th V,	n square Z, P0~I	e root P9 to serv	ve
Range	e WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR	
Range	WX0	WY0	WMO	WS0	TO	C0	R0	R3840	R3904	R3968		D0		V \ Z	
Ope-	- I -												16/32-bit	t	
rand S		_	WM1896	_		C255			R3967	_	_	D4095	0	P0~P9	
D	0	0	0	0	0	0	0	0	0	0 ()*	0 ()*	0	0	0	
		U	U	U	U	U	U	l	U	U	\cup	U	1	\cup	
x0 ∳ -	— EN-		483647	-ERR	_	•							square result ir	י root of th R0.	пe
			S		K		2	147483	3647]				
								Ūχ0=	=1						
			–					4604	0		7				
			D	K 1	R0		R1	4634		R0					
							Γ			RU					
					√214 [′]	74836	47 =	4634().95						
							rou	unding	↑ off						

FUN 29 D P EXT	SIGN EXTENSION	FUN 29 D P EXT										
Operation cor	Ladder symbol Operation control – EN 29P- EXT D B Range WY WM WY0 WM0 WS0 T0 C0 R0 R3904 R3904 R3904 R3904 R3904 R3904 R3904 R3904 R3904 R3904 Range WY WY0 WM0 WS0 T0 C0 R0 R3904 R3904 R3904 R3904 R3904 R3904 R3904 R3904 R3904 R3904											
	WY0 WM0 WS0 T0 C0 R0 R3904 R3968 R5000 D0 V ~ Z Ope- rand I											
numerical successiv numerical	eration control "EN" = 1 or from 0 to 1 (instruction), this instruction will sign exten value specified by D to 32-bit value and store it into the 32-bit register comprised e words, D + 1 and D. (Both values are the same, only it was originally formated value, and was then extended to be formated as a 32 bit numerical value.) uction extent the numerical value of a 16-bit register into an equivalent numerical value for example 33FFH converts to 000033FFH), Its main function is for numerical	by the two as a 16 bit e in a 32-bit										
(+,-,*,/,CN	 The instruction at left takes a 16 bit numerical 	ation all the										
×0 ← -	EN-29P and extends it to an equivalent value in 3 stores it into a 32 bit register (DR0=R1R0) of and R1	32 bits, then										
D R1 R0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 12345										
D R1 R0	B31 R1 B16 B15 R 0 B0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 12345										
	ension (16 bits) R0= CFC7H=-12345 sion (32 bits) R1R0=FFFFCFC7H=-12345 The two numerical values are actually	/ the same										



FUN31 P CRC16		CRC1	6 CALCULATION (CRC16)	FUN31 P CRC16
Ope rand	S : N : D : Range HR ROR DR R0 R5000 D0	- D=0 - ERR	 MD : 0, Lower byte of registers to be calcu CRC16 : 1, Reserved S : Starting address of CRC16 calculation N : Length of CRC16 calculation (In Byte) D : The destination register to store the calc CRC16, Register D stores the Upper Byte of CRC Register D+1 stores the Lower Byte of CRC S, N, D may associate with V \ Z \ P0~P9 in serve the indirect addressing application 	culation of C16 CRC16
 the lowe The outp It will no When covery ofter message CRC16 Perform 	r byte of S and by the ler but indication "D=0" will b e execute the calculation ommunicating with the in en; the well known Mod e frame. s the check value of a C the CRC16 calculation	ngth of N, the be ON if the va and the outpu telligent perip bus RTU con yclical Redund on the recei eans no error	from 0→1 (instruction, it will start the CRC16 calcor result of calculation will be stored into register D ar alue of calculation is 0. ut indication "ERR" will be ON if the length is invalid heral in binary data format, the CRC16 error detect nmunication protocol uses this method for error of dancy Check calculation performed on the messag ved message data and error check value, the r within this message frame.	nd D+1. I. tion is used detection of e contents. esult of the
	S : R0 N : D0 D : R0V)=0 - RR - (CRC16 calculation starting from lower byte of R0, t assigned by D0, and then stores the CRC value i R0+V and R0+V+1. It is supposed D0=10, the registers R10 and R11 v CRC16 value.	nto register
	R0 Don't care R1 Don't care R2 Don't care R3 Don't care R4 Don't care R5 Don't care R6 Don't care R7 Don't care R8 Don't care R9 Don't care	S Low Byte Byte-0 Byte-1 Byte-2 Byte-3 Byte-3 Byte-4 Byte-5 Byte-5 Byte-6 Byte-7 Byte-8 Byte-9	D High Byte Low Byte R10 00 CRC-Hi R11 00 CRC-Lo	

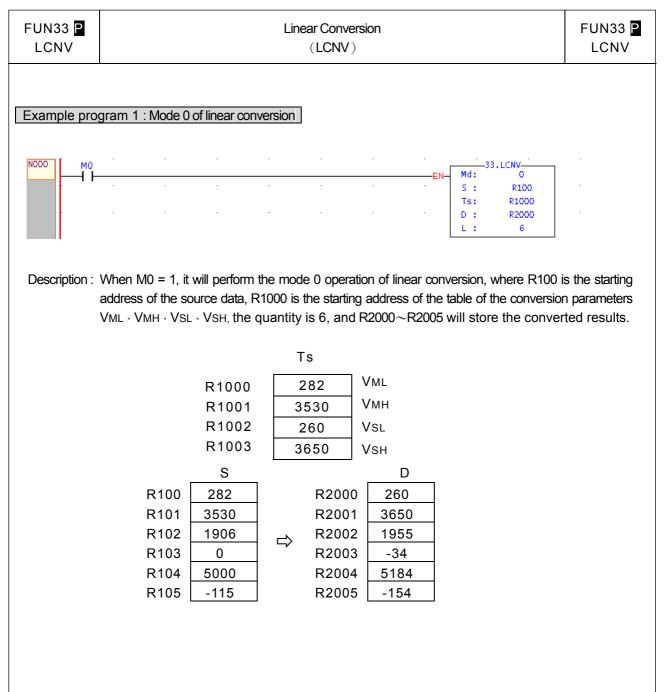
FUN32 CONVERTING THE RAW VALUE OF 4~20MA ANALOG INPUT FUN32 ADCNV ADCNV (ADCNV) Ladder symbol PI: 0, the polarity setting of analog input module is at unipolar 32.ADCNVposition Operation Control - EN PI: : 1, the polarity setting of analog input module is at bipolar S position 14/12 - Bit Selection - F/T Ν S: Starting address of source registers N: Quantity of conversion (In Word) D -D: Starting address of destination registers S, N, D may associate with V \ Z \ P0~P9 index register to serve HR IR ROR DR Κ Range R3840 R5000 R0 D0 the indirect addressing application. Operand R3839 R3903 R8071 D4095 ΡI 0~1 S \cap \cap \bigcirc \bigcirc \cap 1~64 Ν 0 D \bigcirc ()* \bigcirc

- When the analog input is one of 2~10mA/ 4~20mA/1~5V/2~10V, the analog input module is the solution to get the value of this kind of signal, but the input span of the analog input module is 0~10mA/0~5V (Setting at 5V \ Unipolar) or 0~20mA/0~10V(Setting at 10V \ Unipolar), however there will exist the offset of the raw reading value; this instruction is applied to eliminate the offset and convert the raw reading value into the range of 0~4095(12-bit) or 0~16383(14-bit), it is more convenient for following operation.
- When execution control "EN"=1, it will execute the conversion starting from S, length by N, and then store the results into the D registers.
- When the input "F/T" =0, it assigns the 12-bit analog input module; while "F/T" =1, it assigns the 14-bit operation.
- This instruction will not act if invalid length of N.
- The reading value of the analog input must be in -2048~2047 or -8192~8191 format that the conversion will have the correct correspondence. Otherwise, if the reading value is in 0~4095 or 0~16383 format that the conversion will have the wrong correspondence.

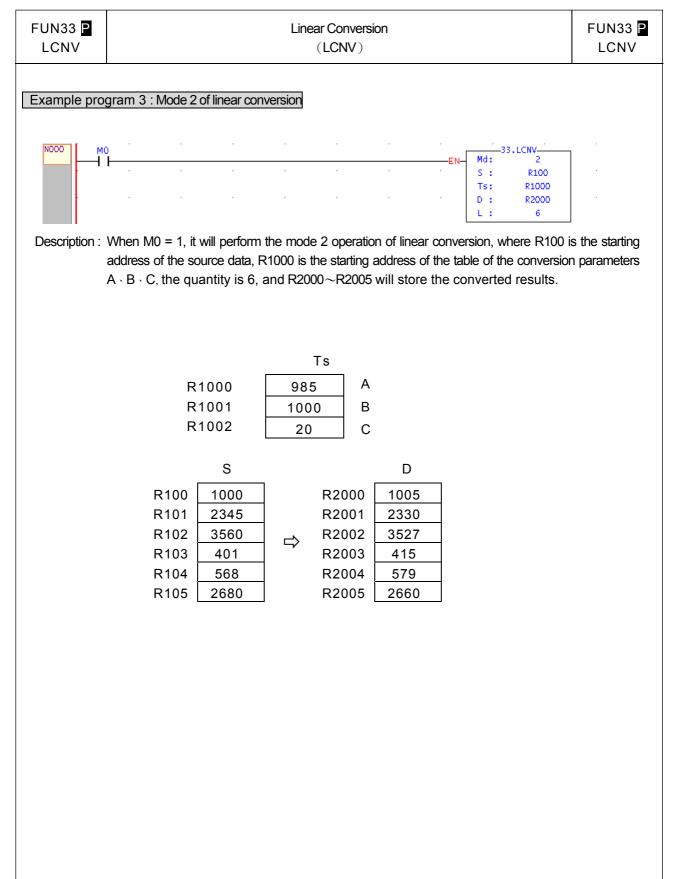
FUN32 ADCNV	CONVERT	ING THE RA	AW VALUE (ADCI		20ma Analoo	g input	FUN32 ADCNV
Example :	32.ADCNV P1: 0 S: R3840 N: 6 D: R500						
	When M0 is ON an the offset of $4 \sim 20$ will be stored into R	nA raw readir					
	R3841 R3842	-1229 409 2047 -2048 -2048 -2048	⇔	D R500 R501 R502 R503 R504 R505	0 2047 4095 0 0 0	(4 mA) (12 mA) (20 mA) (0 mA) (0 mA) (0 mA)	
C	When M0 is ON and offset of 4~20mA ray stored into R500~R5	v reading valu					
	R3841 R3842 R3843 - R3844 -	S - 4916 1637 8191 - 8192 - 8192 - 8192	⇔	R500 R501 R502 R503 R504 R505	D 8191 16383 0 0 0	(4 mA) (12 mA) (20 mA) (0 mA) (0 mA) (0 mA)	

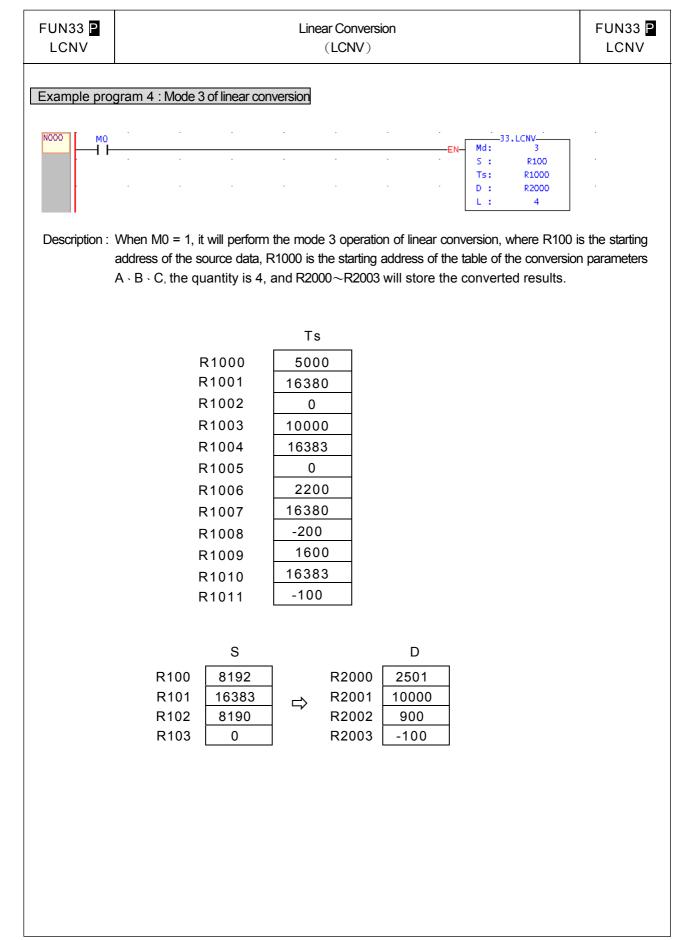
FUN33 P LCNV	Linear Conver (LCNV)	sion	FUN33 P LCNV
Fill the cor	2 : Multiplicator + Offset method nversion parameter table with the values of r rted result(Dn) will be generated from the		
Dn =[(S	n×A)∕B]+C		
A = 1 ~ B = 1 ~ C = -32 Sn = 0 ~	ge of each operand as below: ~ 65535 ~ 65535 768 ~ 32767 ~ 65535 2768 ~ 32767		scaling or linear onversion —→ Sn

Description of operation mode :


- 1. When Md = 0, the linear conversion works by expression 1, and all source data share the same parameters VML \ VMH \ VSL and VSH for conversion.
- 2. When Md = 1, the linear conversion works by expression 1, and each source data has the independent corresponding parameters VML、VMH、VSL、VSH for conversion; if there are N entries of source data, the conversion parameter table should have N groups of VML、VMH、VSL、VSH for working, there are N×4 registers in the conversion parameter table.
- 3. When Md = 2, the linear conversion works by expression 2, and all source data share the same parameters $A \cdot B$ and C for conversion.
- 4. When Md = 3, the linear conversion works by expression 2, and each source data has the independent corresponding parameters A

 B

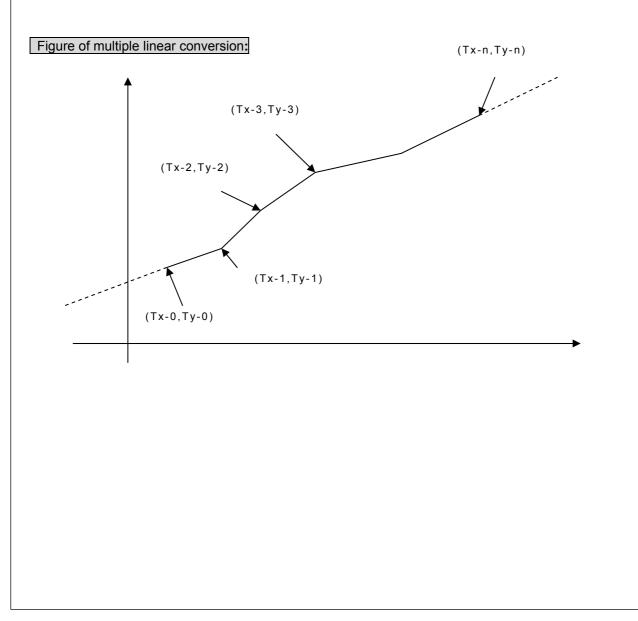

 C for conversion; if there are N entries of source data, the conversion parameter table should have N groups of A


 B

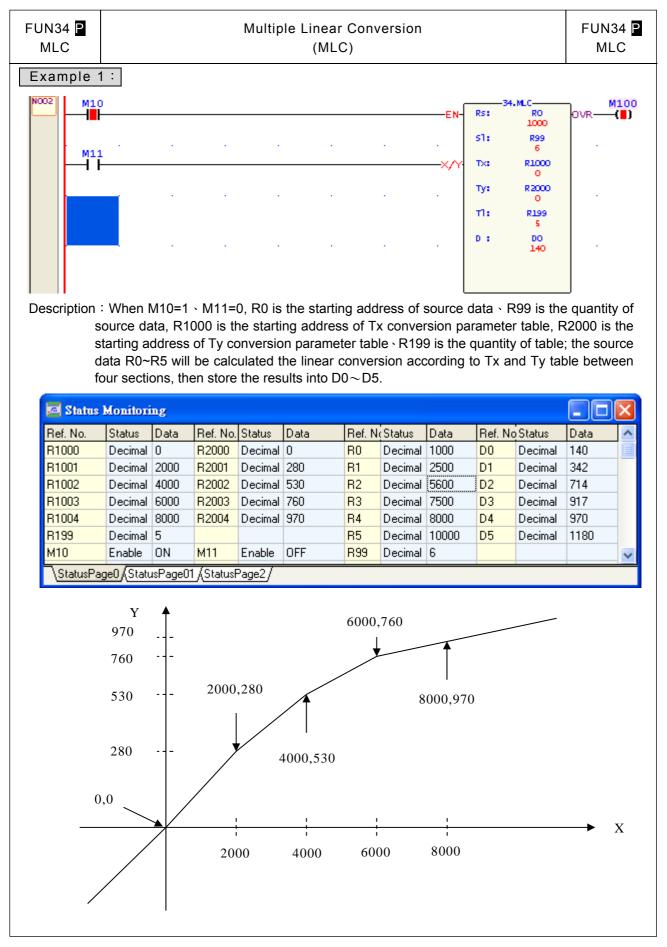
 C for working, there are N×3 registers in the conversion parameter table.

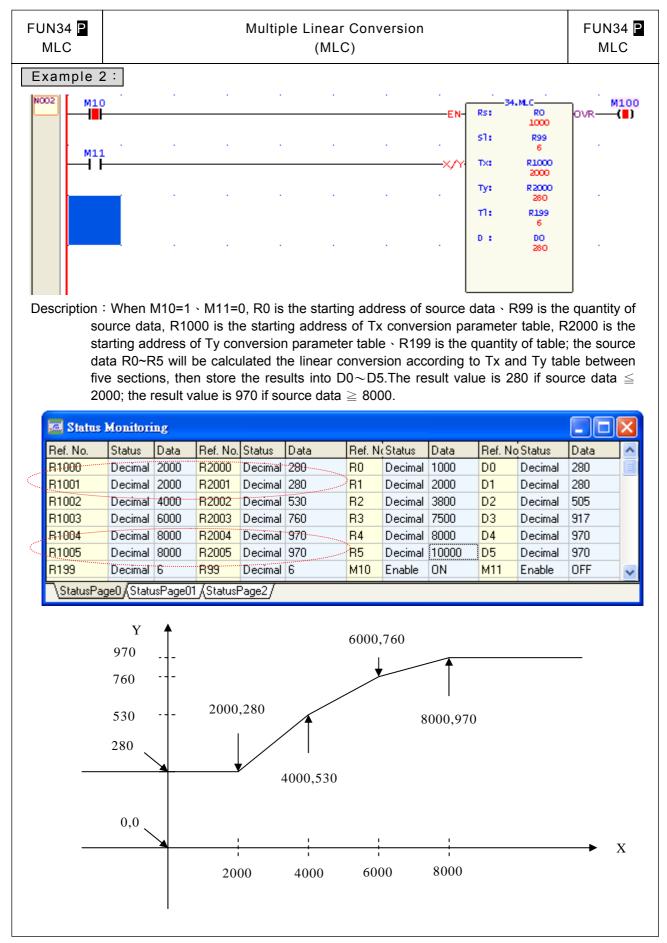
Multiple Linear Conversion

FUN34 P MLC	Multiple Linear Conversion (MLC)	FUN34 MLC
Execution Control Selection	SI: OVR Rs: SI: SI: SI: Tx: SI: Tx: SI: Tx: SI: Tx: SI: Tx: SI: Tx: SI: SI: Ty: SI: TI: Quantity of table, 2~255 D: SI: SI:	4
• When	the analog input module being used for the analog measurement, the raw reachable for the analog measurement, the raw reachable input can be converted into the engineering range through this instruction	ling value of
or for ● For pr variat	proceeding control operation. rocess measurement calibration, making the linear conversion for the engineer ole, which the measurement value from the PLC's can be corrected by the value ard meter's through this instruction.	ring process
 When multip startin startin 	execution control "EN"=1or from $0 \rightarrow 1$ (\square instruction), this instruction will le linear conversion operation according to the selection of X/Y input; when g address of the source data, SI is the quantity of source data for conversion g address of X conversion parameter table, Ty is the starting address of Y neter table, TI is the quantity of X/Y table, D is the starting address to store the	re Rs is the n, Tx is the conversion
to find seque Ty tab When to find or de sectio	executing and selection X/Y=0, it will compare the source data with the entities d the corresponding location in Tx table (The entities in Tx table must be in ence), and then calculate the linear conversion according to the located section ble; executing and selection X/Y=1, it will compare the source data with the entities d the corresponding location in Ty table (The entities in Ty table can either be in scending sequence), and then calculate the linear conversion according to n of Ty and Tx table. the source data is out of all entities of table, OVR=1.	n ascending n of Tx and s of Ty table n ascending
-	Idn't execute this instruction if illegal SI or TI.	

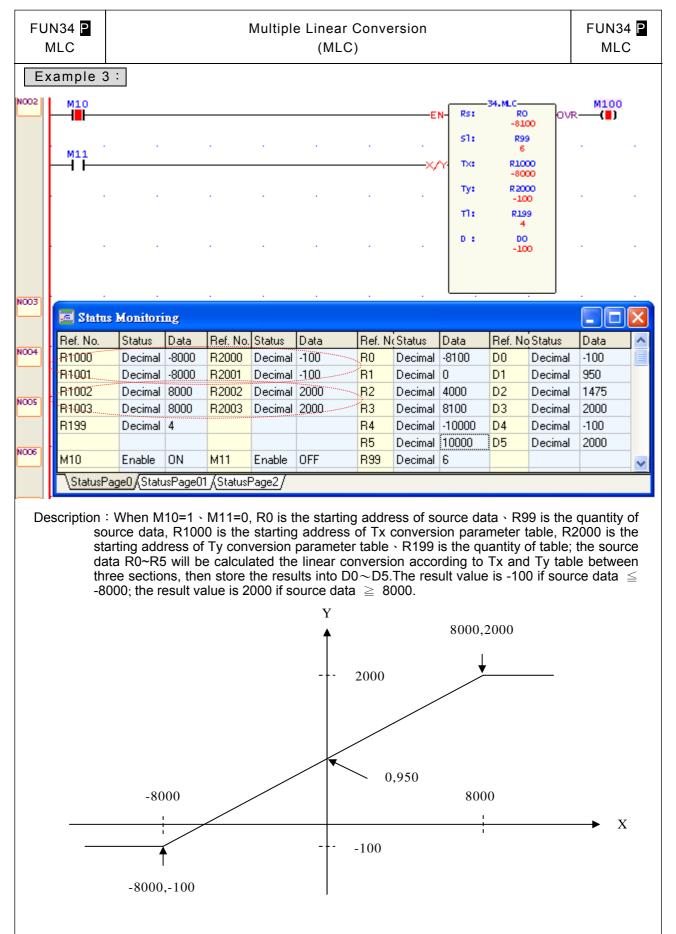

FUN34 P	Multiple Linear Conversion	FUN34 P
MLC	(MLC)	MLC

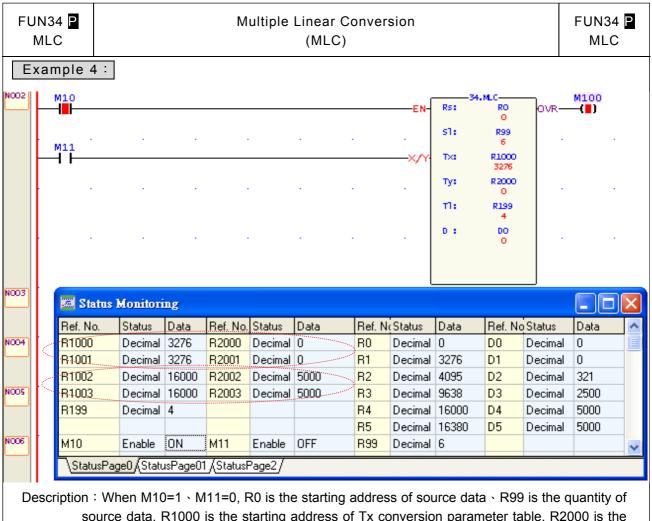
Expression:

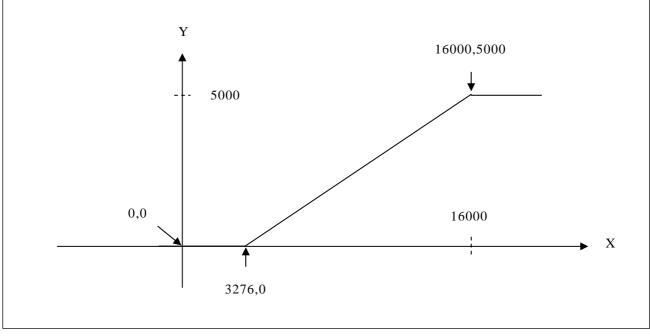

. The entities of Tx conversion parameter table must be in ascending sequence to have correct linear conversion; the entities of Ty conversion parameter table can either be in ascending or descending sequence. When executing this instruction, it will search the located section by comparing entities of the table with source data, and then calculate the linear conversion according to the following expression:


$$Vy = (Vx - Tx_n) \times (Ty_n + 1 - Ty_n / Tx_n + 1 - Tx_n) + Ty_n \text{ if } X/Y=0$$
$$Vx = (Vy - Ty_n) \times (Tx_n + 1 - Tx_n / Ty_n + 1 - Ty_n) + Tx_n \text{ if } X/Y=1$$

.Value of Vy $\$ Vx $\$ Tx_n $\$ Tx_n+1 $\$ Ty_n $\$ Ty_n+1 must be $\$ -32768 \sim 32767

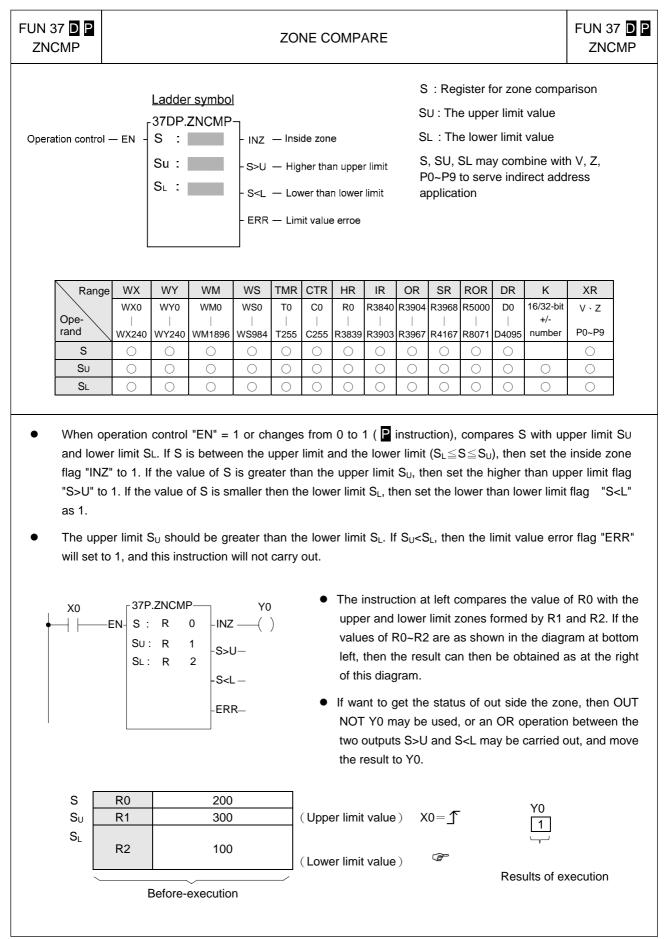



Multiple Linear Conversion

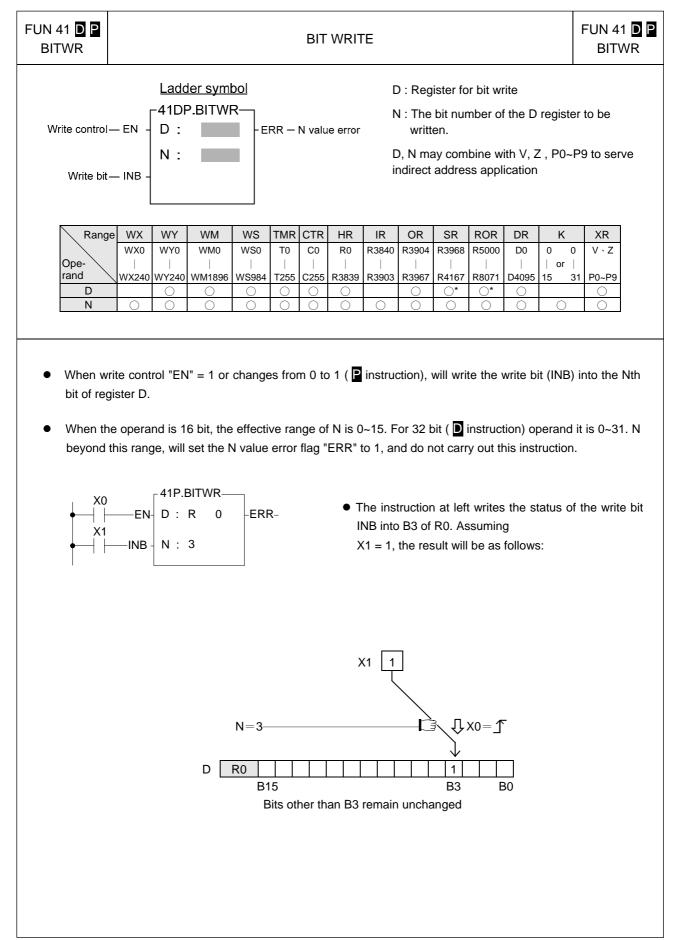


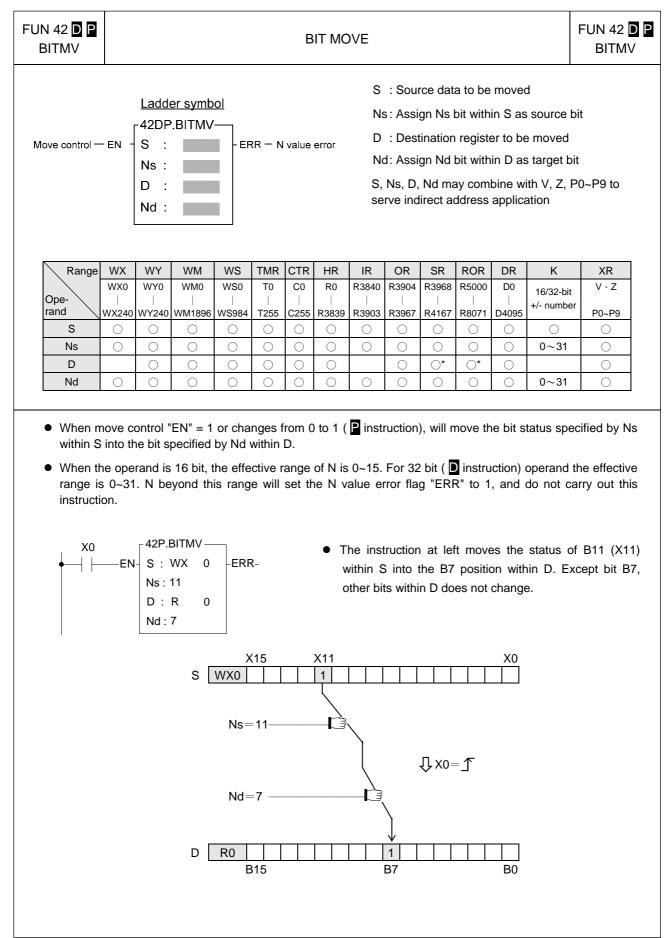
Multiple Linear Conversion

scription : When M10=1 \times M11=0, R0 is the starting address of source data \times R99 is the quantity of source data, R1000 is the starting address of Tx conversion parameter table, R2000 is the starting address of Ty conversion parameter table \times R199 is the quantity of table; the source data R0~R5 will be calculated the linear conversion according to Tx and Ty table between three sections, then store the results into D0 \sim D5.The result value is 0 if source data \leq 3276; the result value is 5000 if source data \geq 16000.



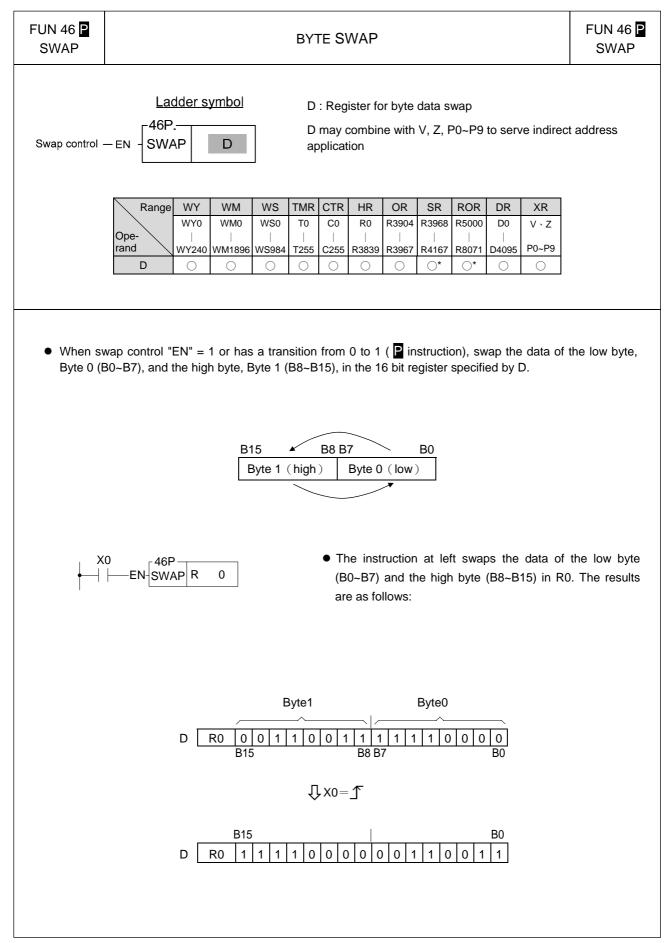
Logical Operation Instructions

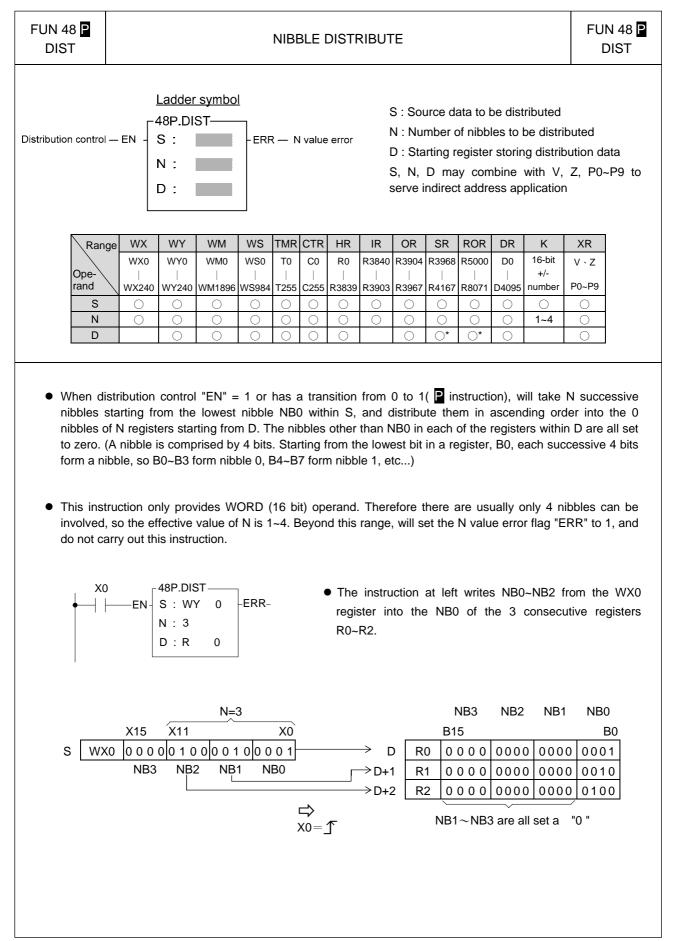

XO	5 D P PR					Ε>	CLU	SIVE	OR							N 35 D XOR	
Opera	tion control	— EN -		ler sym P.XOR		D=0 —	Resu	lt as 0	:	Sa : Source data a for exclusive of Sb : Source data b for exclusive of D : Register storing XOR results Sa, Sb, D may combine with V serve indirect address application						r operation Z, P0~P9 to	
	Range	e WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К	XR		
	Ope- rand	WX0	WY0 ////240	WM0 WM1896	WS084	T0 T255	C0 	R0 			R3968		D0 D4095	16/32bit +/- number			
	Sa	0	0	0	0	0	0	0	0	0	0	0	0		0		
	Sb D	0	0	0	0	0	0	0	0	0	○ ○*	○ ○*	0	0	0	_	
	(exclusive bits of Sa	e or) ope a and Sb	eration (B0~B	15 or B	Sa anc 0~B31	d Sb. ⊺), and	The op if bits	peratio	on of th	nis fun	ction is	s to co	ompar	e the c	orrespo	nding	
•	(exclusive	e or) ope a and Sb nding bit operatio	eration (B0~B within n, if all	of data a 15 or B D as 1, f the bits COR	Sa anc 0~B31 otherw	d Sb. 1), and rise as re all 0	The op if bits 0.	eratic at the set th set th T u	on of the same	nis fun e posi ng "D =	ction is tion ha = 0" to n at le	s to co ave dif 1. ft mak	ompar ferent	e the c status,	orrespo , then s	nding et the eration	


UN 36 D XNR	Ρ					E	XCLL	JSIVE	NOR						FUN 36 XNF	
Operation cc	ontrol –	– EN -				=0 —	Result	as O	Sa : Data a for XNR operation Sb : Data b for XNR operation D : Register storing XNR results Sa, Sb, D may combine with V, Z, indirect address application						P0~P9 to serv	
R	lange	WX	WY	WM	WS	TMR		HR	IR	OR	SR	ROR	DR	К	XR	
Ope- rand		WX0 WX240	WY0 WY240	WM0 WM1896	WS0 WS984	T0 T255	C0 C255	R0 R3839	R3840 R3903	R3904 R3967	R3968 R4167	R5000 R8071	D0 D4095	16/32-bit ± number	V ∖ Z P0~P9	
S	a	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	0	0	0	\bigcirc	0	0	0	
S		\bigcirc	0	0	0	0	0	0	0	0	0	0	0	0	0	
C)		0	0	0	\bigcirc	\bigcirc	0		0	0*	0*	\bigcirc		\bigcirc	
(incl bits with	lusive of Sa nin D a	or) op and S as 1. If	beration Sb (B0 not the	n of data	a Sa an ⁻ B1~B3 to 0.	d Sb. 31), ar	The ond if the	operati he bit	on of t has the	his fur same	nction i e value	s to co	ompare	the corr	ogical XN respondir ponding b	
(incl bits with	lusive of Sa hin D a	or) op and S as 1. If	eration Sb (B0 not the ion, if t	n of data ~B15 or en set it	a Sa an ⁻ B1~B3 to 0. n D are	d Sb. 31), ar	The ond if the then s	operati he bit set the	on of t has the 0 flag ⁻ he ins	his fur same "D=0" tructio	to 1. n at le R1 reg	s to cc , then ft make	ompare set th es a lo	e the corr e corresp gical XN	respondir	
(incl bits with	lusive of Sa in D a er the c	or) op a and S as 1. If operat	eration Sb (B0 not the ion, if t	n of data ~B15 or en set it he bits in 36P.XNF Sa : R Sb : R D : R D : R	a Sa an B1~B3 to 0. n D are 0 1 2 1 1 2	d Sb. 31), ar all 0, -D=0-	The ond if the one of	poperation the bit set the \bullet 7 c in 0 1 1 1 $\times x0 = \frac{1}{2}$	on of t has the 0 flag The ins of the R n the R	his fur same "D=0" tructio 0 and 2 regis	to 1. n at le R1 reg ster.	s to cc , then ft make gisters	es a lo , and t	e the corr e corresp gical XN	R operat	

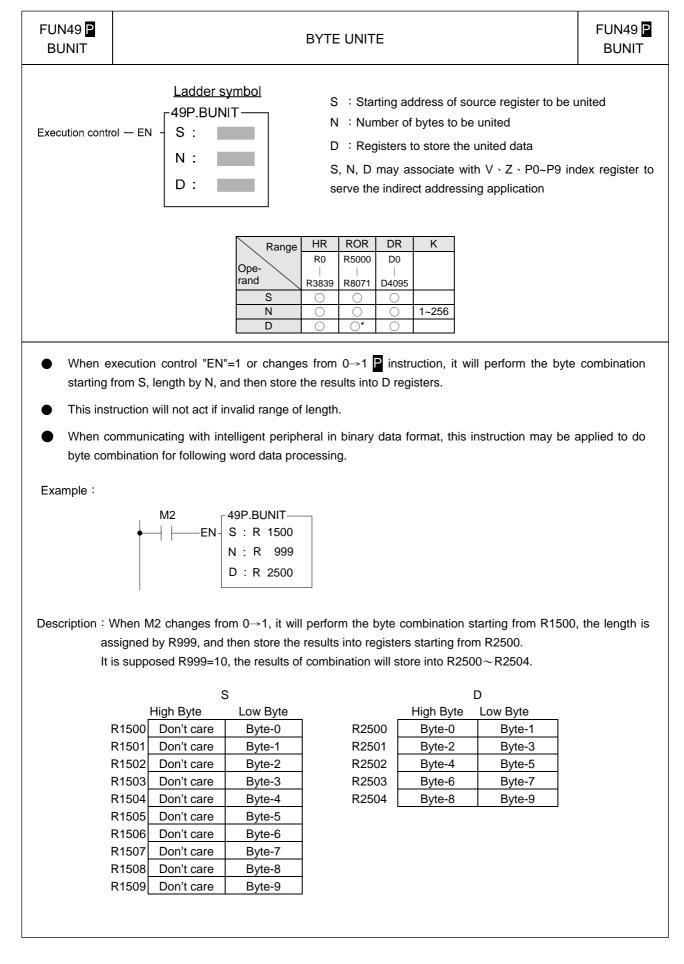

Comparison Instructions

	40 D P TRD						BIT	REA	C						FUN 40 D BITRD
Opera	tion control -			er symb P.BITRD) o	BT — C RR — N TMR			N S,	: The , N ma	bit nur y com		f the S ith V, 2	Z, P0~P9	e read out. to serve
	Range Ope- rand	WX0	WY0	WM0 WM1896	WS0	то 	C0 	R0 	R3840	R3904 	R3968 	R5000	D0 	n 16/32-bit +/- number	V · Z
	S	0	0		WS984	T255	C255	0	R3903	0	0	0	04095	0	0~P9
	Ν	\bigcirc	\bigcirc	0	\bigcirc	0	0	\bigcirc	\bigcirc	0	0	0	0	0~31	\bigcirc
•		id this i	range v	vill set th BITRD — WX 0		lue err Y 3(or flag	"ERR The	" to 1, : instruc) (X0~	and do	not c	arry ou eads t	it this i he 7th	instruction	it is 0~31. n. status from ults are as
				S N		15	0 0	1 1 YC			0 1 J X0=		X0 0 1		




FUN 44 D P BYMV						BYT	TE MC	DVE						FUN 44 BYM	
Move control—	Ladder symbol S : Source data to be moved 44DP.BYMV - ERR - N value error Ns : Assign Ns byte within S as source Ns : - ERR - N value error D : Destination register to be moved Ns : - ERR - N value error Nd : Assign Nd byte within D as target Nd : - Md : - ERR - N value error													byte	
Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	к	XR	1
INange	WX0	WY0	WMO	WS0	TO	C0	R0	R3840			R5000	DR D0	16/32-bit	V · Z	
Ope-													+/- number	50 50	
rand S	0	0 WY240	WM1896	WS984	T255	C255	R3839	R3903	R3967	R4167	R8071	D4095	0	P0~P9	_
Ns	0	0	0	0	0	0	0	0	0	0	0	0	0~3	0	
D		\bigcirc	0	0	0	0	0		0	○*	0*	0		0	
Nd	\bigcirc	0	0	\bigcirc	0	0	0	0	0	0	\bigcirc	0	0~3	\bigcirc	
	0~3. on.	Beyon EN- S Ns D		ange, v V		-	 The with byt 	e erro e instru hin S (e withi	uction (32 bit in D (3	"ERR at left regist 2 bit r	t to 1 t move	, and es the posed r comp	truction) of do not ca third byte d of R1R0 posed of F	e (B16~B), to the	his 23) first ther
s	R1 R(1 (0 1 1	1 0	1 1							
		<u> </u>	Byte	3	\	В	yte2	/		Byte	e1		Byte	90	1
	N	s=2—										Û X0⊧	=1		
	N	d=1—	Puto'	0			vto2			Put	<u>\</u> 1		Duto	0	
D	R3 R2	2 B31		3		B	yte2		10	Byte	21 1 0 1			;0 B(0

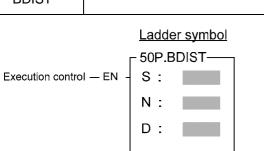
FUN 45 D P XCHG		FUN 45 D P XCHG										
Exchange contr	^{45DI}	ler symbol P.XCHG—	Da : Register a to be exchanged Db : Register b to be exchanged Da, Db may combine with V, Z, P0~P9 to serve indired address application									
	RangeWOpe- randWYDa(Db(Y0 WM0 240 WM1896	WS0 WS984 T 	CTR T0 C0 7255 C255 ○ ○			R3968		DR D0 D4095 	XR V \ Z P0~P9 O		
 When exchange control "EN" = 1 or has a transition from 0 to 1 (instruction), will exchanges the contents of register Da and register Db in 16 bits or 32 bits (instruction) format. X0 45P.XCHG Da : R 0 Db : R 1 The instruction at left exchanges the contents of the 16-bit R0 and R1 registers. 												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
B15 Da R0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												



FUN 47 P UNIT		NIBBLE UNITE												Fl	JN 47 <mark>P</mark> UNIT	
Unite control —	- EN -	Ladder symbol S : Starting source register to be un 47P.UNIT N : Number of nibbles to be united N : ERR - N value error N : D : D : Image: Starting source register to be united) serve		
Ra	ange \	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К	XR	1
	V V	NX0	WY0	WM0	WS0	TO	C0	R0	R3840	R3904	R3968	R5000	D0	1	V × Z	
Operand	. \	 'X240	WY240	WM1896	WS984	T255	C255	R3839	R3903	R3967	R4167	 R8071	D4095	4	P0~P9	
	S	0	0	0	\bigcirc	\bigcirc	\bigcirc	0	0	0	0	0	0		\bigcirc	
	N D	0	0	0	0	0	0	0	0	0	 ★	 ★	0	0	0	
			0	0	0	0	0	0		0	0	0	0		0]
 When unite control "EN" = 1 or has a transition from 0 to 1 (instruction), take out the lowest nibbles NB0, of N successive registers starting from S, and fill them into NB0, NB1,NBn-1 of D in ascending order. Nibbles not yet filled in D (when N is odd) are filled with 0. (A nibble is comprised by 4 bits. Starting from the lowest bit in the register, B0, each successive four bits form a nibble, so B0~B3 form nibble 0, B4~B7 form nibble 1, etc). This instruction only provides WORD (16 bit) operand. Because of this, there are usually only 4 nibbles can be involved. Therefore the effective range of N is 1~4. Beyond this range, will set the N value error flag "ERR" to 1, and do not carry out this instruction. The instruction at left takes out NB0 from 3 registers, R0, R1 and R2, and fills them into NB0~NB2 within WY0 register. 																
N=3 $\begin{cases} S \\ S+\\ S+ \end{cases}$	-1 F -2 F	R0 R1 R2	B15 B12	2B11 B8	B7 B4	4 B3 000 00 010 NB	10 00					V Y 0	5↑	\uparrow		

Data Movement Instructions I

Data Movement Instructions I

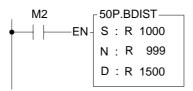


Data Movement Instructions I

FUN50 P

BDIST

FUN50 P BDIST

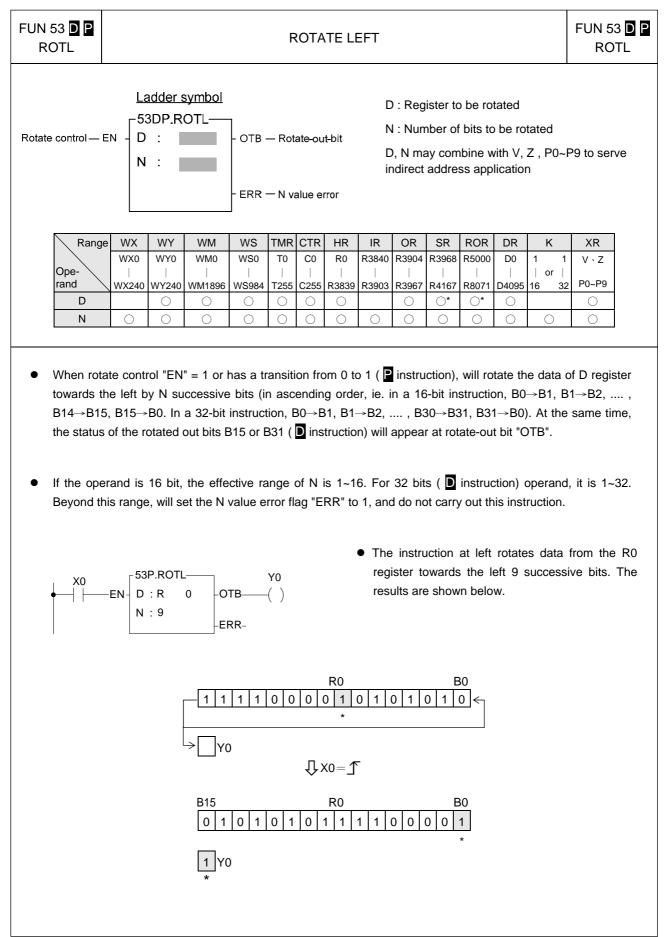

- S : Starting address of source register to be distributed
- N : Number of bytes to be distributed
- D : Registers to store the distributed data
- S, N, D may associate with V²P0~P9 index register to serve the indirect addressing application.

Range	HR	ROR	DR	K
Ope- rand	R0	R5000	D0	
rand	R3839	R8071	D4095	
S	0	0	0	
Ν	0	\bigcirc	0	1~256
D	0	O*	0	

BYTE DISTRIBUTE

- When execution control "EN" =1 or changes from $0 \rightarrow 1$ (pinstruction), it will perform the byte distribution starting from S, length by N, and then store the results into D registers.
- This instruction will not act if invalid range of length.
- When communicating with intelligent peripheral in binary data format, this instruction may be applied to do byte distribution for data transmission •

Example :


Description : When M2 changes from 0→1, it will perform the byte distribution starting from R1000, the length is assigned by R999, and then store the results into registers starting from R1500. It is supposed R999=9, the results of distribution will store into R1500~R1508.

S	6
High Byte	Low Byte
Byte-0	Byte-1
Byte-2	Byte-3
Byte-4	Byte-5
Byte-6	Byte-7
Byte-8	Don't care
	High Byte Byte-0 Byte-2 Byte-4 Byte-6

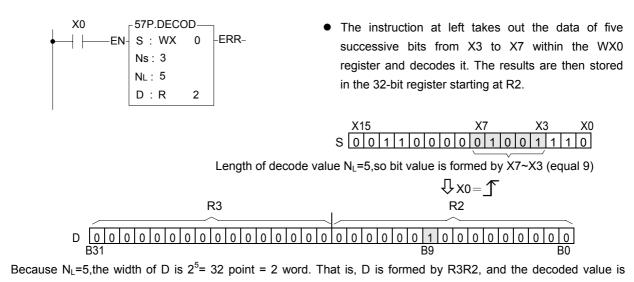
C)
High Byte	Low Byte
00	Byte-0
00	Byte-1
00	Byte-2
00	Byte-3
00	Byte-4
00	Byte-5
00	Byte-6
00	Byte-7
00	Byte-8
	High Byte 00 00 00 00 00 00 00 00 00 00

FUN 51 D P SHFL						SHI	FT LE	FT						FUN 5 [.] SHF	
Shift control — Shift in bit —	en -	<u>Ladde</u> 51DP. D : N :	r symbo SHFL—	- OTE	3 — SI R — N			۲ ۱	N : Nur N, D m	ay com	f bits to nbine v	be sh	Z, P0~P	9 to serve	9
					[1
Range		WY	WM	WS		CTR	HR	IR	OR	SR	ROR	DR	K	XR	
Ope-	WX0	WY0	WMO	WS0	T0	C0	R0	R3840	R3904	R3968	R5000	D0	1 1 or	V · Z	
rand	WX240	WY240	WM1896	WS984	T255	C255	R3839	R3903	R3967	R4167	R8071	D4095		P0~P9	
D		\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	O*	○*	\bigcirc		0	
N	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
 If the operation Beyond the second seco	erand i	s 16 bi ge, will 51P.S D : R	t, the efforts set the N GHFL		error f	ilag "E	ERR" to The tow	o 1, an e instr	nd do n uction he left	ot carr at lef	y out t t shift	his insi s the	truction. data in	l, it is 1~ register e results	R0
		Y0	B15 ← 0 () 1 1	0 (o 1 ₽	R0 0 1 X0= <u>^</u>	1 1 Г	1 0	1 1	30 0 ←				
		Y0 1 *	B15 0 (0 1 0	1	1 1	R0 1 0	0 0	01	<u>1</u> 1 △ △	B0 1	INB			

FUN 52 D P SHFR					S	HIFT	RIG	ΗT						FUN 5 SHI	
Shift control Shift in bit	- EN - [r symbo SHFR–	- от	⁻B — ₹ ₹R — №				N : N D, N	umbei may c	of bits		shifted V, Z, P()∼P9 to s	erve
Ra Ope- rand D N	nge WX WX0 WX240	WY WY0 WY240 O	WM WM0 WM1896	WS WS0 WS984 〇	TMR T0 T255 〇	C 0	HR R0 R3839 ()		OR R3904 R3967 			DR D0 D4095 ()	K 1 1 or 16 32 0	XR V · Z P0~P9 O	
towards instructio B0 will ap	——EN - D	by N s een sh hift-out 6 bit, t	successi ifted righ bit "OTE he effec the N v	ive bits nt, thein s". ctive ra alue er OTB—	s (in o r posit nge o	desce ions v	nding will be 1~16 R" to	orde repla 5. For 1, and The tow	r). Aft aced b 32 bi d do no e instru ards	er the y the ts (ot car uction the ri	instru ry out	est bit n bit IN uction) this ins shifts 1 y 15	ts, B15 NB, while operand struction.	or B31(e shift-out d, it is 1~	D bit 32.
	_ III [NB 0 →	B15 10 *	ERR-	1 0	10 ŪX	D=Ţ) 1 (0 1	0 1	B0 0 →	, 10 , 10			
		NB 0 △	B15 0 0 △ △	00	0 0 △	0 0			00	0 0	B0 1	Y0 0 *			

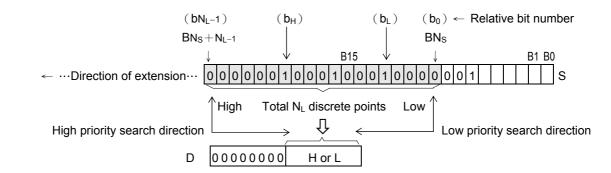
UN 54 D P ROTR					R	ТАТС	E RIG	HT							FUN 54 RO	
Rotate contro	I — EN)TB — :RR —		⊱out-bit e error	1 :	D : Reg N : Nur D, N m ndirect	nber c ay cor	of bits t nbine	to be r with V	, Z, F		99 to ser	ve
Rang	e WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	<	XR	
	WX0	WY0	WMO	WS0	то	C0	R0	R3840	R3904	R3968	R5000	D0	1	1	V × Z	
Ope- rand	WX240	 WY240	WM1896	 WS984	 T255	 C255	 R3839	R3903	 R3967	R4167	 R8071	 D4095	o 16	r ∣ 32	P0~P9	
D	1	0	0	0	0	0233	\bigcirc		0	O*	O*	0			0	
N	0	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	С)	0	
B14→B1 the same	3, , E time, th erand is	B1→B(ne statu 16 bit		15. In a rotated ective r	out B() bits v of N is	will app s 1~16	bear at 5. For	the ro	otate-o s (D	ut bit " instruc	OTB".	opera	and,		
B14→B1 the same	3, , E time, th erand is his rang	$31 \rightarrow B0$ ne statu 16 bir e, will	b), B0→B ² us of the r t, the effe set the N ROTR— R 0	15. In a rotated ective r	ange ange error fl Y	0 bits v of N is ag "EF	will app s 1~16 RR" to • 1 t	bear at 5. For 1, and The ins oward	the ro 32 bits do no	tate-o s (D t carry on at lo ight 8	ut bit " instruc out th	OTB". ction) (his inst	opera ructic ata fr	and, on. rom		32. ster

FUN55 D P B→G			BIN	ARY-C	CODE	TO G	RAY	-COD	E CO	NVER	SION	l		F	UN55 D B→G
o	peratio	on contro	ol — EN	۲ ^{55D}	<u>der s</u> y P.B- > :				D: S,[g addi and ca	ress of in com	f destina bine V 、		P0~P9 for
Range Ope- rand S D	WX WX0 WX240	WY WY0 WY240 〇	WM WM0 WM1896	WS WS0 WS984 O	TMR T0 1255 〇 〇	CTR C0 C255 () ()	HR R0 R3839 () ()	IR R3840 R3903 		SR R3968 R4167 			K 16/32 +/- nun		XR V ⋅ Z P0~P9 ○ ○
where • The co XOR	S is th onversi	ie sour	ntrol "EN ce (Binar thod show x XOR 1 1 \downarrow \downarrow	ry code <u>)</u> wn as b), and below	D is the XOR	e dest XOR	inatior	ı (Gray	/ code)) for st	oring t		t.	cor 1
→1 Example 1: V	1 When I M0		55P.B <i>→</i>	m 0→1 →G			m the •	Conve	erting t	he 16-	bit Bin		0 de in R0 e result ii		
R0 = 1001	01010	— EN	D:R	100)= 110	01111		-							

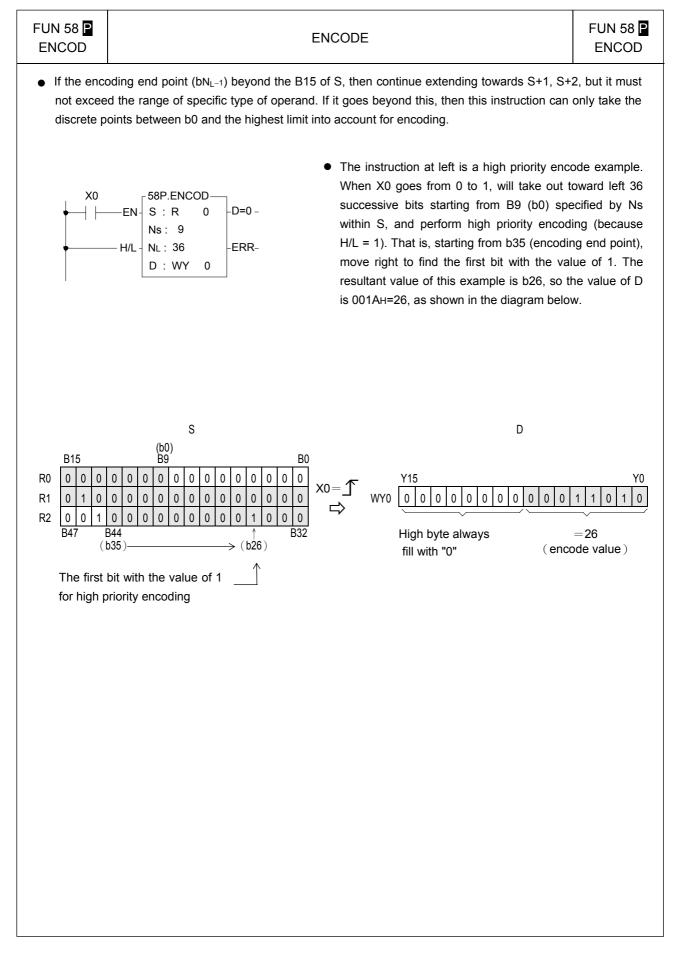

FUN55 D P B→G		BINARY-CODE	E TO GRA	AY-CODE C	ONVERSIO	N	FUN55 D P B→G
Example 2: \	Vhen M0 =1, it v	vill perform the 32	-bit code o	conversion			
		-55DP.B→G S : R0 D : R100				inary-code in DR oring the result ir	
DR0=0011	01110010010	0001011110001	0100B -	DR100=0	0101100101	1101100011100	010011110B

FUN56 D P G→B			GRA	Y-COI	DE TO) BIN	ARY-(CODE	CON	IVER	SION			FL	JN56 G→E	
Operation cont	rrol — I	EN -	Ladder s 56DP.G- S :	-			D S	: Sta	rting a operar		s of de	estinati	on V 、Z 、	P0~F	9 for	index
Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К		XR	
Ope-	WX0	WY0	WM0	WS0	T0	C0	R0	R3840	R3904	R3968	R5000	D0	16/32-	·bit	V · Z	
rand	WX240	WY240	WM1896	WS984	T255	C255	R3839	R3903	R3967	R4167	R8071	D4095	+/- num	nber	P0~P9	
S D	0	0	0	0	0	0	0	0	0	0 ()*	0 ()*	0			0	
		0	U	0	0	0	0		0	0	0	0			U	
• The co	nversi		thod show 1 1 1 1 1 1 1 1 1	vn as b 0	elow : 0	(1 1 1	1	0	1	1		1 ↓ 1	
Example 1: V	Vhen N	M0 cha	inges fror	n 0→1	, it will	perfor	m the	16-bit	code (conver	sion					
•	M0 	—EN							-		-	-code nto D1	in D0 inta 00.	o Bina	ary-cod	e,
D0=10010	1010	10100	11B →	D100 -	= 111(00110	01100	0010E	}							

FUN56 D P G→B	GRAY-CODE TO BINARY-CODE CONVERSION	FUN56 D P G→B
Example 2: \	When M0 =1, it will perform the 32-bit code conversion	
+	M0 - EN = EN = EN = EN = S : D0 D : D100 Converting the 32-bit Gray-code in DD0 into and then storing the result into DD100.	to Binary-code,
DD0=00110	011100100100010111100010100B → DD100=0010010111000111110010100	0011000B

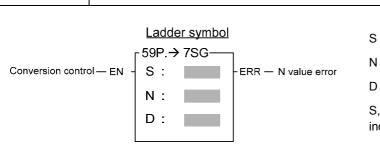

FUN 57 P DECOD						D	ECOD	Ε					I	FUN 57 DECOD
Decode cont	rol — El	N - S	s: L:		- ERR	₹— Ra	ange err	or	(N _S : S N _L : L D : S (S, N _S	16 bits Starting ength of Starting $2\sim 256$, N _L D) bits to of decc registe points may co	be deo ded va er storir = 1~16 ombine	to be deco coded with alue (1~8 l ng decode words) with V, Z application	nin S pits) ed results , P0~P9
	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR			
📐 Range									011		T(OI)	DR	ĸ	XR
Range Ope- rand	WX0 	WY0 WY240	WM0 WM1896	WS0 WS984	T0 T255	C0 C255	R0 R3839	R3840 R3903	R3904 R3967	R3968 R4167	R5000	DR D0 D4095	K 16/32-bit +/- number	XR V · Z P0~P9
Ope-	WX0 								R3904	R3968	R5000	D0	16/32-bit	V · Z
Ope- rand	WX0 							 R3903	R3904	R3968	R5000	D0 D4095	16/32-bit +/- number 0~15	V · Z P0~P9
Ope- rand	WX0 WX240		 WM1896	 WS984				 R3903	R3904	R3968	R5000	D0 D4095	16/32-bit +/- number	V · Z P0~P9

- This instruction, will set a single bit among the total of 2^{NL} discrete points (D) to 1 and the others bit are set to 0. The bit number to be set to 1 is specified by the value comprised by $BN_S \sim BN_S + N_{L-1}$ of S (which is called the decode value, BN_S is the starting bit of the decode value, and BN_S+N_{L-1} is the end value).
- When decode control "EN" = 1 or has a transition from 0 to 1 (\mathbf{P} instruction), will take out the value BN_S~ BN_S+N_{L-1} from S. And with this value to locate the bit position and set D accordingly, and set all the other bit to zero
- This instruction only provides 16 bit operand, which means S only has B0~B15. Therefore the effective range of Ns is 0~15, and the NL length of the decode value is limited to 1~8 bits. Therefore the width of the decoded result D is 2^{1-8} points = $2\sim256$ points = $1\sim16$ words (if 16 points are not sufficient, 1 word is still occupied). If the value of N_S or N_L is beyond the above range, will set the range-error flag "ERR" to 1, and do not carry out this instruction.
- If the end bit value exceeds the B15 of S, then will extend toward B0 of S + 1. However if this occurs then S+1 can't exceed the range of specific type of operand (ie. If S is of D type register then S+1 can't be D3072). If violate this, then this instruction only takes out the bits from starting bit BNs to its highest limit as the decode value.



01001=9, therefore B9 (the 10th point) within D is set to 1, and all other points are 0.

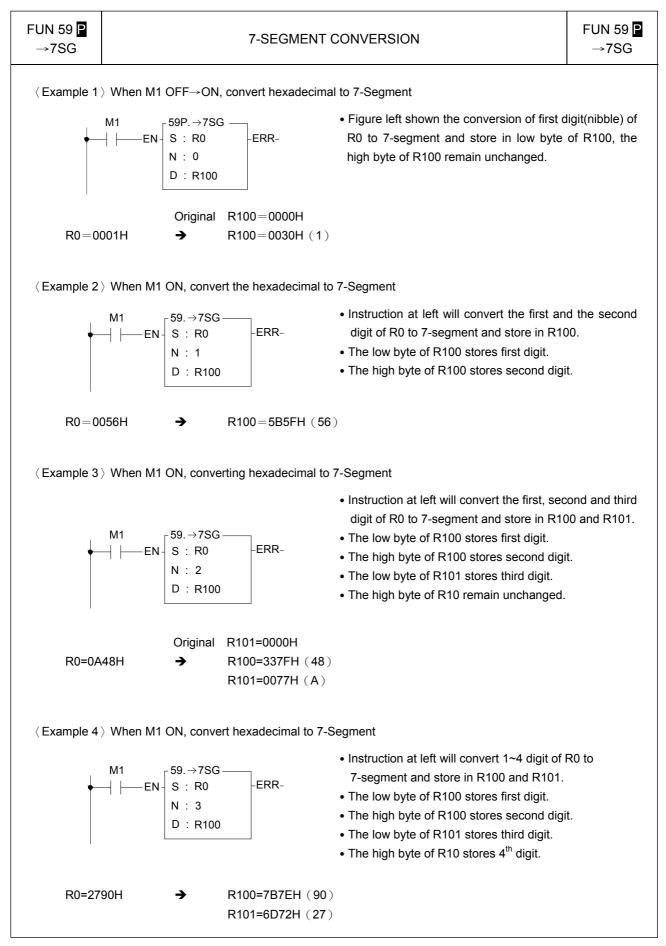
FUN 58 P ENCOD						E	NCOD	E						FUN 58 ENCOD
Encode contro High/Low priority		58P			=0 — , RR —	All is 0 Range	error	Ns N∟ D S, N	: Bit po point : Numb : Numb (1 w N _S , N _L ,	per of e per of re pord)	vithin S ncoding egister combir	as the g discre storing ne with	encodin ete points encoding V, Z, P0 [,]	s (2~256) g results
Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К	XR
Ope- rand	WX0 WX240	WY0 WY240	WM0 WM1896	WS0 WS984	T0 T255	C0 C255	R0 R3839	R3840 R3903	R3904 R3967	R3968 R4167	R5000 R8071	D0 D4095	16-bit +/- number	V · Z P0~P9
S	0	0	0	0	\bigcirc	\bigcirc	0	0	0	0	0	0		0
NI	0	0	0	\bigcirc	0	0	0	0	0	0	0	0	0~15	\bigcirc
Ns					1	-		0	\bigcirc	\bigcirc	0			
	\bigcirc	\bigcirc	0	0	\bigcirc	0	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	2~256	0


- As shown in the diagram above, for high priority encoding, the bit first to find is b_H (with a value of 12), and for low priority encoding, the bit first to find b_L (with a value of 4). Among the N_L discrete points there must be at least one bit with value of 1. If all bits are 0, will not to carry out this instruction, and the all zero flag "D=0" will set to 1.
- Because S is a 16-bit register, Ns can be 0~15, and is used to assign a point of B0~B15 within S as the encoding start point (b0). The value of N_L can be 2~256, and it is used to identify the encoding end point, i.e. it assigns N_L successive single points starting from the start point (b0) towards the left (high position direction) as the encoding zone (i.e. $b0 \sim bN_{L^{-1}}$). If the value of Ns or NL exceeds the above value, then do not carry out this instruction, and set the range-error flag "ERR" as 1.

FUN 59 ₽ →7SG

7-SEGMENT CONVERSION

FUN 59 ₽ →7SG

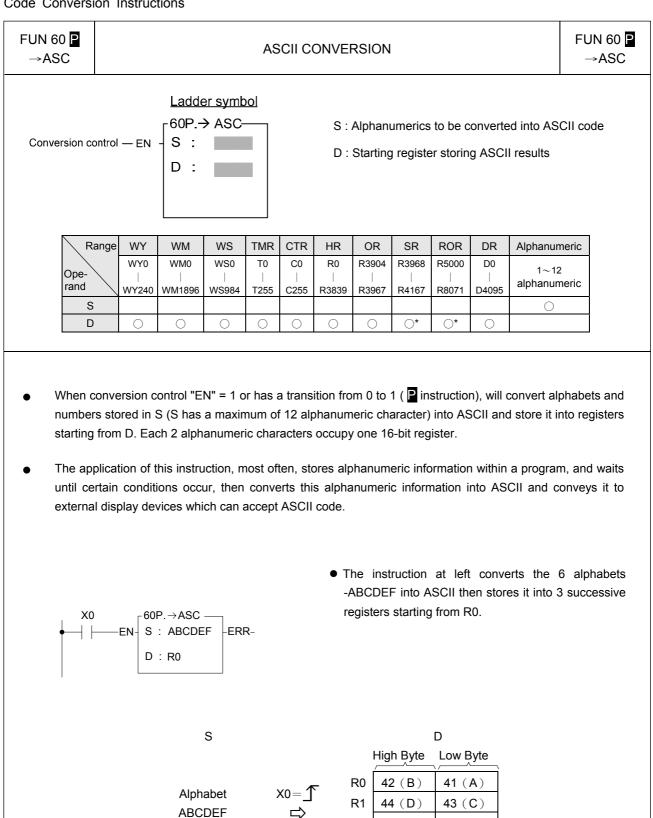


S : Source data to be converted
N : The nibble number within S for conversion
D : Register storing 7-segment result

S, N, D may combine with V, Z,P0~P9 to serve indirect address application

Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К	XR
	WX0	WY0	WM0	WS0	Т0	C0	R0	R3840	R3904	R3968	R5000	D0	16-bit	V 、 Z
Ope- 🔪													+/-	
rand	WX240	WY240	WM1896	WS984	T255	C255	R3839	R3903	R3967	R4167	R8071	D4095	number	P0~P9
S	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc
Ν	\bigcirc	0	0	0	\bigcirc	0	0	0	0	0	0	0	0~3	\bigcirc
D		0	0	0	\bigcirc	\bigcirc	0		0	O*	O*	0		0

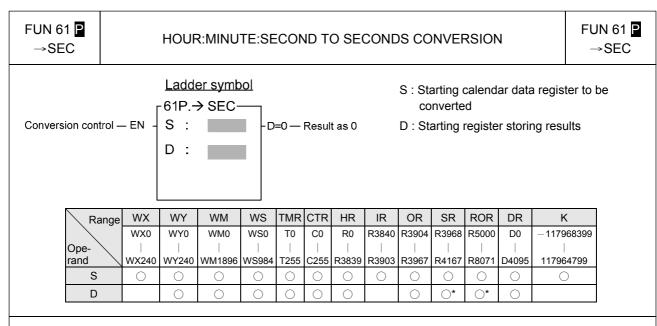
- When conversion control "EN" = 1 or has a transition from 0 to 1 (instruction), will convert N+1 number of nibbles (A nibble is comprised by 4 successive bits, so B0~B3 of S form nibble 0, B4~B7 form nibble 1, etc...)within S to 7-segment code, and store the code into a low byte of D (High bytes does not change). The 7 segment within D are put in sequence, with "a" segment placed at B6, "b" segment at B5,, "g" segment at B0. B7 is not used and is fixed as 0. For details please refer the "7-segment code and display pattern table".
- Because this instruction is limited to 16 bits, and S only has 4 nibbles (NB0~NB3), the effective range of N is 0~3. Beyond this range, will set the N value flag error "ERR" to 1, and does not carry out this instruction.
- Care should be taken on total nibbles to be converted is N+1. N=0 means one digit to convert, N=1 means two digits to convert etc...
- When using the FATEK 7-segment expansion module(FBs-7SGxx) and the FUN84 (7SEG) handy instruction for mixing decoding and non-decoding application, FUN59 and FUN84 can be combined to simplify the program design.

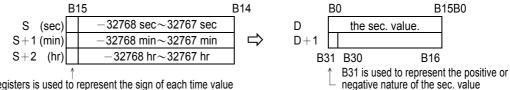


FUN 59 ₽ →7SG

7-SEGMENT CONVERSION

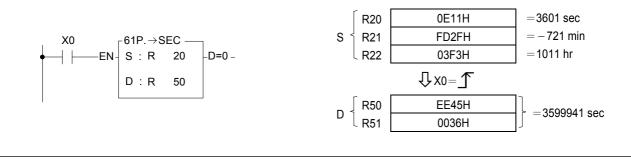
FUN 59 ₽ →7SG


Nibble da	ta of S	7 sogmont			I	_ow by	rte of D)			Display
Hexadecimal number	Binary number	- 7-segment display format	B7 ●	B6 a	B5 b	B4 c	B3 d	B2 e	B1 f	B0 g	Display pattern
0	0000		0	1	1	1	1	1	1	0	
1	0001		0	0	1	1	0	0	0	0	0 0
2	0010		0	1	1	0	1	1	0	1	
3	0011		0	1	1	1	1	0	0	1	
4	0100	B6 a	0	0	1	1	0	0	1	1	ų
5	0101		0	1	0	1	1	0	1	1	5
6	0110	B2 e c B4 B3 P B7	0	1	0	1	1	1	1	1	6
7	0111	вз 🔍	0	1	1	1	0	0	1	0	ŋ
8	1000		0	1	1	1	1	1	1	1	
9	1001		0	1	1	1	1	0	1	1	9
А	1010		0	1	1	1	0	1	1	1	P
В	1011		0	0	0	1	1	1	1	1	b
С	1100		0	1	0	0	1	1	1	0	
D	1101		0	0	1	1	1	1	0	1	đ
E	1110		0	1	0	0	1	1	1	1	
F	1111		0	1	0	0	0	1	1	1	F

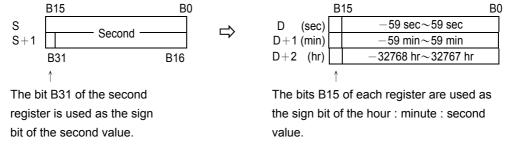

R2

46 (F)

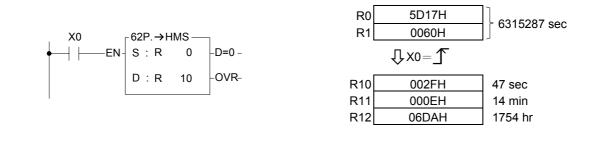
45 (E)



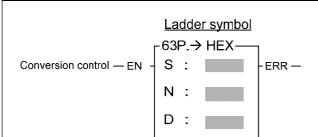
- When conversion control "EN" = 1 or has a transition from 0 to 1 (P instruction), will convert the hour: minute: second data of S~S+2 into an equivalent value in seconds and store it into the 32-bit register formed by combining D and D+1. If the result = 0, then set the "D = 0" flag as 1.
- Among the FBs-PLC instructions, the hour: minute: second time related instructions (FUN61 and 62) use 3 words of register to store the time data, as shown in the diagram below. The first word is the second register, the second word is the minute register, and finally the third word is the hour register, and in the 16 bits of each register, only B14~B0 are used to represent the time value. While bit B15 is used to express whether the time values are positive or negative. When B15 is 0, it represents a positive time value, and when B15 is 1 it represents a negative time value. The B14~B0 time value is represented in binary, and when the time value is negative, B14~B0 is represented with the 2's complement. The number of seconds that results from this operation is the result of summation of seconds from the three registers representing hours: minutes: seconds.



The B15 of each registers is used to represent the sign of each time value


- Besides FUN61 or 62 instruction which treat hour: minute: second registers as an integral data, other instructions treat it as individual registers.
- The example program at below converts the hour: minute: second data formed by R20~R22 into their equivalent value in seconds then stored in the 32-bit register formed by R50~R51. The results are shown below.

FUN 62 <mark>P</mark> →HMS				SEC	OND-	∍HOI	UR :	MINU	TE:S	SECO	ND				FUN 62 <mark>P</mark> →HMS
Conversion c	ontrol –	– EN -		ler symb → HMS-	- D=	•	Result Over r			:Starti	ing reg	ister s	toring r	nd to be result of e : seco	
	Range		WY	WM	WS	TMR		HR	IR	OR	SR	ROR	DR	К	
Ope		WX0 	WY0 	WM0	WS0	то 	C0 	R0 			R3968			-117968 	
Tanu	s	WX240	WY240	WM1896	WS984	1255	C255	R3839	R3903	R3967	R4167	R8071	D4095	1179647	'99
	D		0	0	0	0	0	0		0	O*	O *	0		
from t succe	he S~S ssive i	S+1 32 register	ebit reg rs D∼D	gister into	the eq he data	uivale in th	ent ho iis ins	our : m	inute :	secon	d time	value	and st	ore it in	cond data the three negative


- As shown in the diagram above, after convert to hour : minute : second value, the minute : second value can only be in the range of -59 to 59, and the hour number can be in the range of -32768 to 32767 hours. Because of this, the maximum limit of D is -32768 hours, -59 minutes, -59 seconds to 32767 hours, 59 minutes, 59 seconds, the corresponding second value of S which is in the range of -117968399 to 117964799 seconds. If the S value exceeds this range, this instruction cannot be carried out, and will set the over range flag "OVR" to 1. If S = 0 then result is 0 flag "D = 0" will be set to 1.
- The program in the diagram below is an example of this instruction. Please note that the content of the registers are denoted by hexadecimal, and on the right is its equivalent value in decimal notation.

FUN 63 ₽ →HEX

CONVERSION OF ASCII CODE TO HEXADECIMAL VALUE

FUN 63 ₽ →HEX

- S : Starting source register.
- N : Number of ASCII codes to be converted to hexadecimal values.
- D : The starting register that stores the result (hexadecimal value).

S, N, D, can associate with V, Z, P0~P9 to do the indirect addressing application.

Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К	XR
Ope-	WX0	WY0	WM0	WS0	Т0	C0	R0	R3840	R3904	R3968	R5000	D0	16-bit	V、Z
Ope- rand	WX240	WY240	WM1896	WS984	T255	C255	R3839	R3903	R3967	R4167	R8071	D4095	+number	P0~P9
S	\bigcirc	0	\bigcirc	\bigcirc		\bigcirc								
Ν	\bigcirc	0	0	0	0	0	\bigcirc	0	0	0	0	0	1~511	\bigcirc
D		0	\bigcirc	0	0	0	0		0	O*	O*	0		\bigcirc

- When conversion control "EN" =1 or changes from 0→1(instruction), it will convert the N successive hexadecimal ASCII character('0'~'9','A'~'F') convey by 16 bit registers (Low Byte is effective) into hexadecimal value, and store the result into the register starting with D. Every 4 ASCII code is stored in one register. The nibbles of register, which does not involve in the conversion of ASCII code will remain unchanged.
- The conversion will not be performed when N is 0 or greater than 511.
- When there is ASCII error (neither $30H \sim 39H$ nor $41H \sim 46H$), the output "ERR" is ON.
- The main purpose of this instruction is to convert the hexadecimal ASCII character ('0'~'9','A'~'F'), which is received by communication port1 or communication port2 from the external ASCII peripherals, to the hexadecimal values that the CPU can process directly.

FUN 63
 CONVERSION OF ASCII CODE TO HEXADECIMAL VALUE
 FUN 63

$$\rightarrow$$
HEX
 CONVERSION OF ASCII CODE TO HEXADECIMAL VALUE
 \rightarrow HEX

 (Example 1) When MI from OFF \rightarrow ON, ASCII code converted to hexadecimal value.
 • Converts the ASCII code of R0 into hexadecimal value and store to inbibe (inbibe1-nibble3 remain unchanged) of R100

 Originally R100 - 0000H
 R100 - 0000H
 • Converts the ASCII code of R0 and R1 into hexadecimal value.

 $M1$
 $G3 \rightarrow HEX$
 • Converts the ASCII code of R0 and R1 into hexadecimal value.

 $M1$
 $G3 \rightarrow HEX$
 • Converts the ASCII code of R0 and R1 into hexadecimal value.

 $M1$
 $G3 \rightarrow HEX$
 • Converts the ASCII code of R0 and R1 into hexadecimal value.

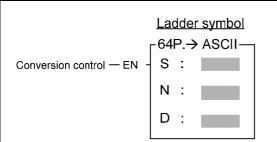
 $M1$
 $G3 \rightarrow HEX$
 • Converts the ASCII code of R0 and R1 into hexadecimal value.

 $M1$
 $G3 \rightarrow HEX$
 • Converts the ASCII code of R0 and R1 into hexadecimal value.

 $M1$
 $G3 \rightarrow HEX$
 • Converts the ASCII code of R0 and R1 into hexadecimal value.

 $M1$
 $G3 \rightarrow HEX$
 • Converts the ASCII code of R0 and R1 into hexadecimal value.

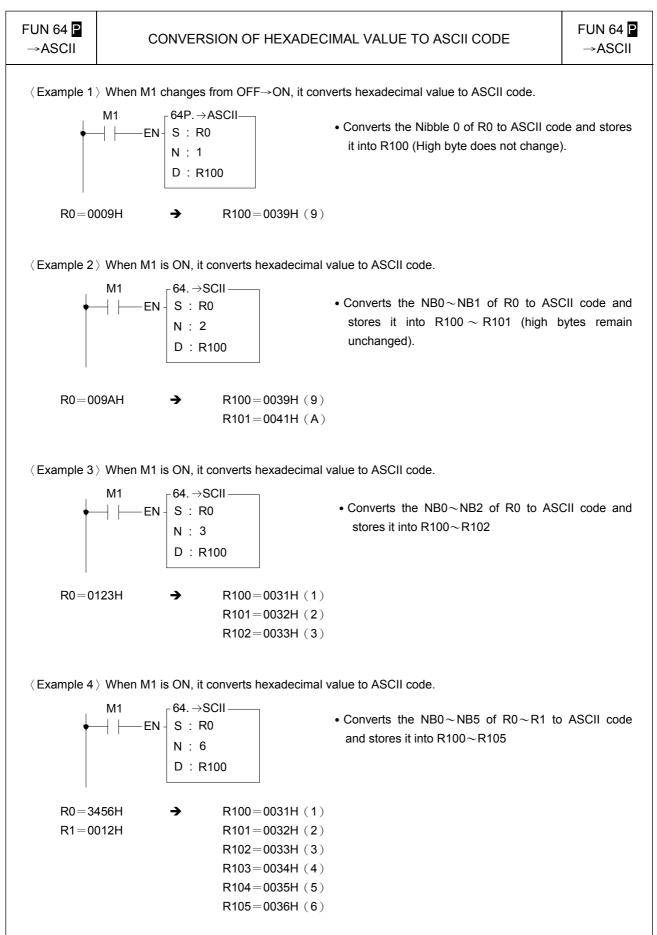
 $M1$
 $G3 \rightarrow HEX$
 • Converts the ASCII code of R0 and R1 into hexadecimal value.


 $M1$
 $G3 \rightarrow HEX$
 • Converts the ASCII code of R0 and R1 into hexadecimal value.

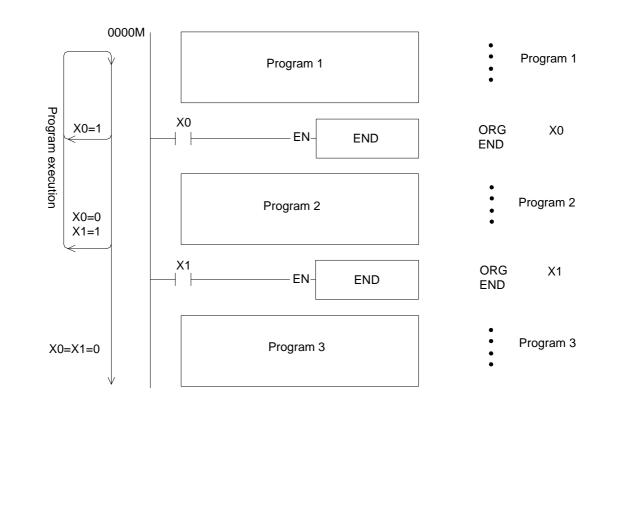
 $M1$
 $G3$
 $G3 \rightarrow HEX$
 • Co

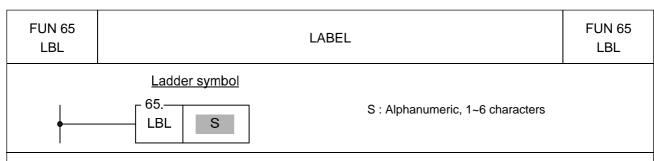
FUN 64 ₽ →ASCII

CONVERSION OF HEXADECIMAL VALUE TO ASCII CODE


FUN 64 ₽ →ASCII

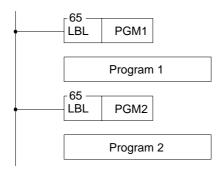
- S : Starting source register
- N : Number of hexadecimal digit to be converted to ASCII code.
- D : The starting register storing result.
- S, N, D, can associate with V, Z, P0~P9 to do the indirect addressing application.

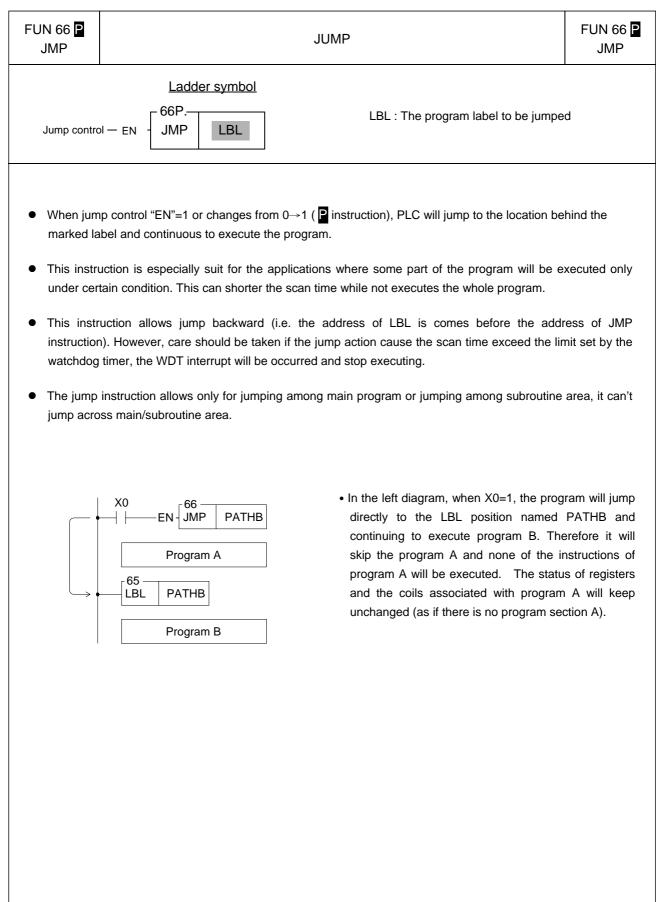

Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К	XR
Ope- rand	WX0	WY0	WM0	WS0	T0	C0	R0	R3840	R3904	R3968	R5000	D0	16-bit	V · Z
rand	WX240	WY240	WM1896	WS984	T255	C255	R3839	R3903	R3967	R4167	R8071	D4095	+ number	P0~P9
S	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	0	\bigcirc	0		\bigcirc
Ν	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	1~511	\bigcirc
D		0	\bigcirc	0	\bigcirc	\bigcirc	0		\bigcirc	O*	O*	\bigcirc		\bigcirc

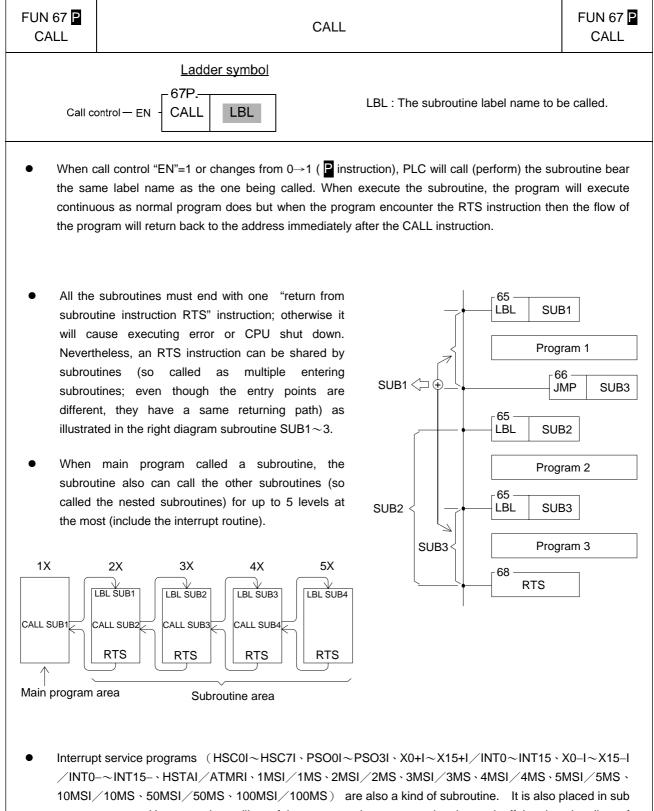

- When conversion control "EN" =1 or changes from 0→1(P instruction), will convert the N successive nibbles of hexadecimal value in registers start from S into ASCII code, and store the result to low byte (high byte remain unchanged) of the registers which start from D.
- The conversion will not be performed when the value of N is 0 or greater than 511.
- The main purpose of this instruction is to convert the numerical value data, which PLC has processed, to ASCII code and transmit to ASCII peripherals by communication port1 or communication port 4.

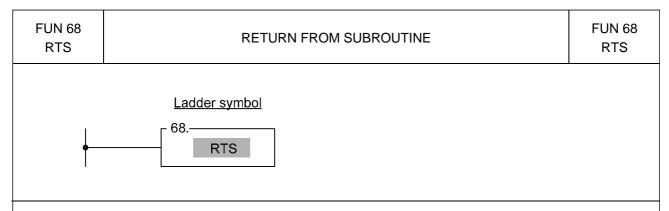
END	PROGRAM END	END
	Ladder symbol	
End cor	trol — EN - END No operand	

- When end control "EN" = 1, this instruction is activated. Upon executing the END instruction and "EN" = 1, the program flow will immediately returns to the starting point (0000M) to restart the next scan i.e. all the programs after the END instruction will not be executed. When "EN" = 0, this instruction is ignored, and programs after the END instruction will continue to be executed as the END instruction is not exist.
- This instruction may be placed more than one point within a program, and its input (end control "EN") controls the end point of program execution. It is especially useful for debugging and for testing.
- It's not necessary to put any END instructions in the main program, CPU will automatic restart to start point when reach the end of main program.

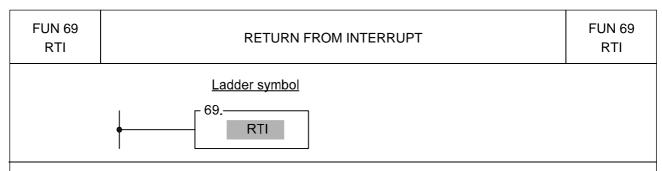


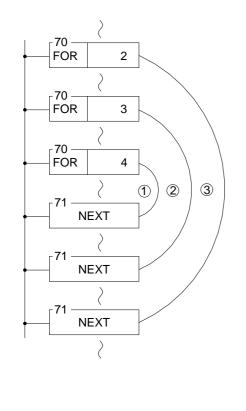

- This instruction is used to make a tag on certain address within a program, to provide a target address for execution of JUMP, CALL instruction and interrupt service. It also can be used for document purpose to improve the readability and interpretability of the program.
- This instruction serves only as the program address marking to provide the control of procedure flow or for remark. The instruction itself will not perform any actions; whether the program contains this instruction or not, the result of program execution will not be influenced by this instruction.
- The label name can be formed by any 1~6 alphanumeric characters and can't be duplicate in the same program. The following label names are reserved for interrupt function usage. These "reserved words", can't be used for normal program labels.

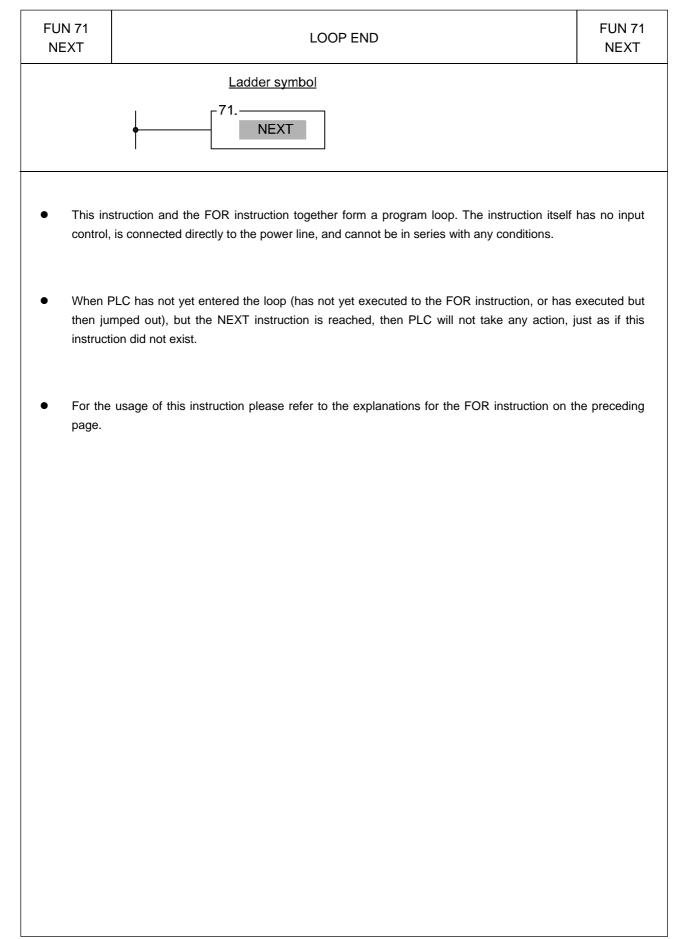

Reserved words	Description
X0+I~X15+I (INT0~INT15)	labels for external input (X0~X15) interrupt
X0-I~X15-I (INT0-~INT15-)	service routine.
HSC0I~HSC7I	labels for high speed counter HSC0~HSC7 interrupt service routine.
1MSI (1MS) 、2MSI (2MS) ,3MSI (3MS) , 4MSI (4MS) ,5MSI (5MS) ,10MSI (10MS) , 50MSI (50MS) ,100MSI (100MS)	Labels for 8 kinds of internal timer interrupt service routine.
HSTAI (ATMRI) , HST0I~HST3I	Label for High speed fixed timer interrupt service routine.
PSO0I~PSO3I	Labels for the pulse output command finished interrupt service routine.


Only the interrupt service routine can use the label names listed on above table, if mistaken on using the reserved label on the normal subroutine can cause the CPU fail or unpredictable operation.

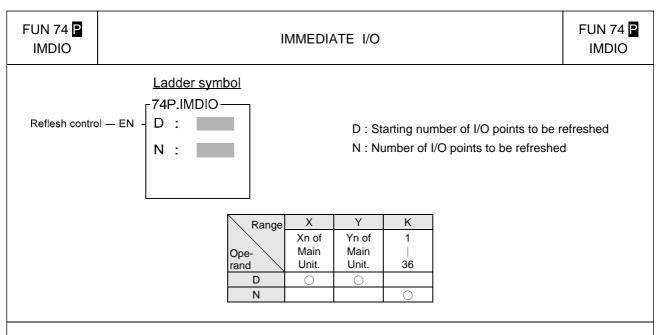
The label of following diagram illustration served only as program remarks (it is not treated as a label for call or jump target). For the application of labeling in jump control, please refer to JMP instruction for explanation. As to the labeling serves as subroutine names, please refer to CALL instruction for details.




- This instruction is used to represent the end of a subroutine. Therefore it can only appear within the subroutine area. Its input side has no control signal, so there is no way to serially connect any contacts. This instruction is self sustain, and is directly connected to the power line.
- When PLC encounter this instruction, it means that the execution of a subroutine is finished. Therefore it will return to the address immediately after the CALL instruction, which were previously executed and will continue to execute the program.
- If this instruction encounters any of the three flow control instructions MC, SKP, or JMP, then this instruction
 may not be executed (it will be regarded as not exist). If the above instructions are used in the subroutine
 and causing the subroutine not to execute the RTS instruction, then PLC will halt the operation and set the
 M1933(flow error flag) to 1. Therefore, no matter what the flow is going, it must always ensure that any
 subroutine must be able to execute a matched RTS instruction.
- For the usage of the RTS instruction please refer to instructions for the CALL instruction.

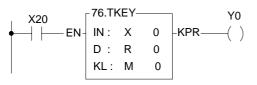

- The function of this instruction is similar to RTS. Nevertheless, RTS is used to end the execution of sub program, and RTI is used to end the execution of interrupt service program. Please refer to the explanation of RTS instruction.
- A RTI instruction can be shared by more than one interrupt service program. The usage is the same as the sharing of an RTS by many subroutines. Please refer to the explanation of CALL instruction.
- The difference between interrupts and call is that the sub program name (LBL) of a call is defined by user, and the label name and its call instruction are included in the main program or other sub program. Therefore, when PLC performs the CALL instruction and the input "EN"=1 or changes from 0→1 (p instruction), the PLC will call (execute) this sub program. For the execution of interrupt service program, it is directly used with hardware signals to interrupt CPU to pause the other less important works, and then to perform the interrupt service program corresponding to the hardware signal (we call it the calling of interrupt service program). In comparing to the call instruction that need to be scanned to execute, the interrupt is a more real time in response to the event of the outside world. In addition, the interrupt service program cannot be called by label name; therefore we preserve the special "reserved words" label name to correspond to the various interrupts offered by PLC (check FUN65 explanation for details). For example, the reserved word X0+I is assigned to the interrupt is occurred at input point X0; as long as the sub program contains the label of X0+I, when input point X0 interrupt is occurred (X0: _f), the PLC will pause the other lower priority program and jump to the subroutine address which labeled as X0+I to execute the program immediately.
- If there is a interrupt occurred while CPU is handling the higher priority (such as hardware high speed counter interrupt) or same priority interrupt program (please refer to Chapter 10 for priority levels), the PLC will not execute the interrupt program for this interrupt until all the higher priority programs were finished.
- If the RTI instruction cannot be reached and performed in the interrupt service routine, may cause a serious CPU shut down. Consequently, no matter how you control the flow of program, it must be assured that the RTI instruction will be executed in any interrupt service program.
- For the detailed explanation and example for the usage of interrupts, please refer to Chapter 9 for explanation.

FUN 70 FOR	FOR														FUN 70 FOR
-		-7(- F	0. OR	Ν				N : M	lumbe	r of tim	es of l	oop ex	ecutior	ı	
	Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К	
		WX0	WY0	WM0	WS0	Т0	C0	R0	R3840	R3904	R3968	R5000	D0	1	
Ope		 /X240	 WY240	 WM1896	WS081	T255	C255	P3830	P3003	B3067	 R4167	R8071	 D4095	 16383	
	N	0	0												

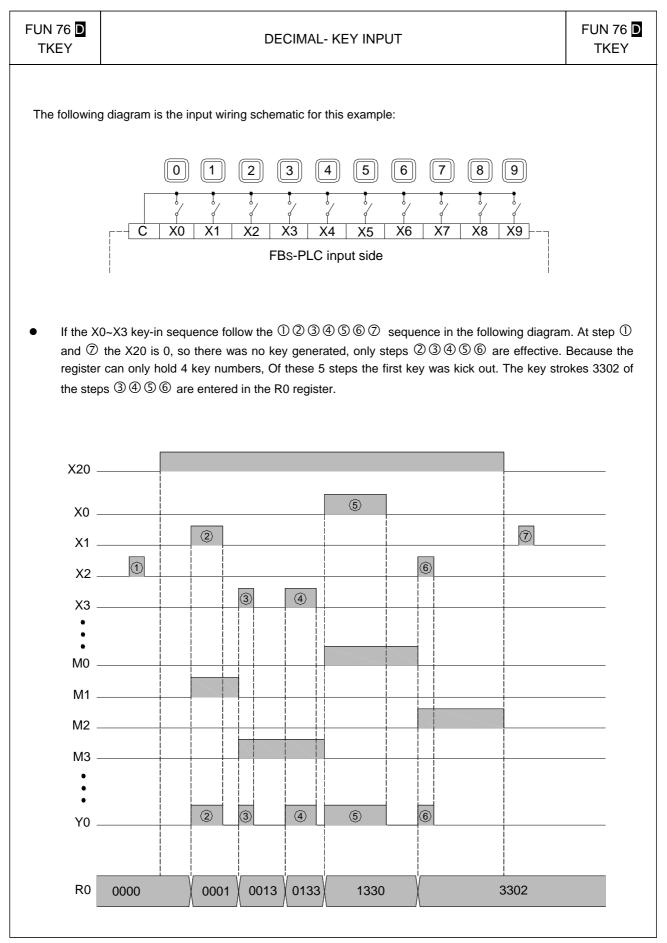

- This instruction has no input control, is connected directly to the power line, and cannot be in series with any conditions.
- The programs within the FOR and NEXT instructions form a program loop (the start of the loop program is the next instruction after FOR, and the last is the instruction before NEXT). When PLC executes the FOR instruction, it first records the N value after that instruction (loop execution number), then for N times successively execution from start to last of the programs in the loop. Then it jumps out of the loop, and continues executes the instruction immediately after the NEXT instruction.
- The loop can have a nested structure, i.e. the loop includes other loops, like an onion. 1 loop is called a level, and there can be a maximum of 5 levels. The FOR and NEXT instructions must be used in pairs. The first FOR instruction and the last NEXT instruction are the outermost (first) level of a nested loop. The second FOR instruction and the second last NEXT instruction are the second level, the last FOR instruction and the first NEXT instruction form the loop's innermost level.

- In the example in the diagram at left, loop ① will be executed 4 ×3 ×2 = 24 times, loop ② will be executed 3 ×2 = 6 times, and loop ③ will be executed 2 times.
- If there is a FOR instruction and no corresponding NEXT instruction, or the FOR and NEXT instructions in the nested loop have not been used in pairs, or the sequence of FOR and NEXT has been misplaced, then a syntax error will be generated and this program may not be executed.
- In the loop, the JMP instruction may be used to jump out of the loop. However, care must be taken that once the loop has been entered (and executed to the FOR instruction), no matter how the program flow jumps, it must be able to reach the NEXT instruction before reaching the END instruction or the bottom of the program. Otherwise FBs-PLC will halt the operation and show an error message.
- The effective range of N is 1~16383 times. Beyond this range FBs-PLC will treat it as 1. Care should be taken , if the amount of N is too large and the loop program is too big, a WDT may occur.

I/O Instructions I

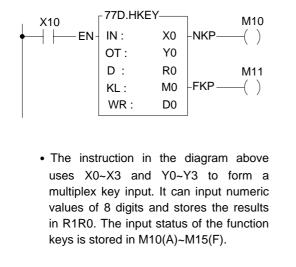

- For normal PLC scan cycle, the CPU gets the entire input signals before the program is executed, and then perform the executing of program based on the fresh input signals. After finished the program execution the CPU will update all the output signals according to the result of program execution. Only after the complete scan has been finished will all the output results be transferred all at once to the output. Thus for the input event to output responses, there will be a delay of at least 1 scan time (maximum of 2 scan time). With this instruction, the input signals or output signals specified by this instruction can be immediately refresh to get the faster input to output response without the limitation imposed by the scan method.
- When refresh control "EN" = 1 or has a transition from 1 to 0(instruction), then the status of N input points or output points (D~D+N-1) will be refreshed.
- The I/O points for FBs-PLC's immediate I/O are only limited to I/O points on the main unit. The table below shows permissible I/O numbers for 20, 32, 40 and 60 point main units:

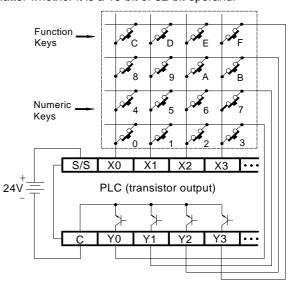
Main-unit type Permissible numbers	10 points	14 points	20 points	24 points	32 points	40 points	60 points
Input signals	X0~X5	X0~X7	X0~X11	X0~X13	X0~X19	X0~X23	X0~X35
Output signals	Y0~Y3	Y0~Y5	Y0~Y7	Y0~Y9	Y0~Y11	Y0~Y15	Y0~Y23

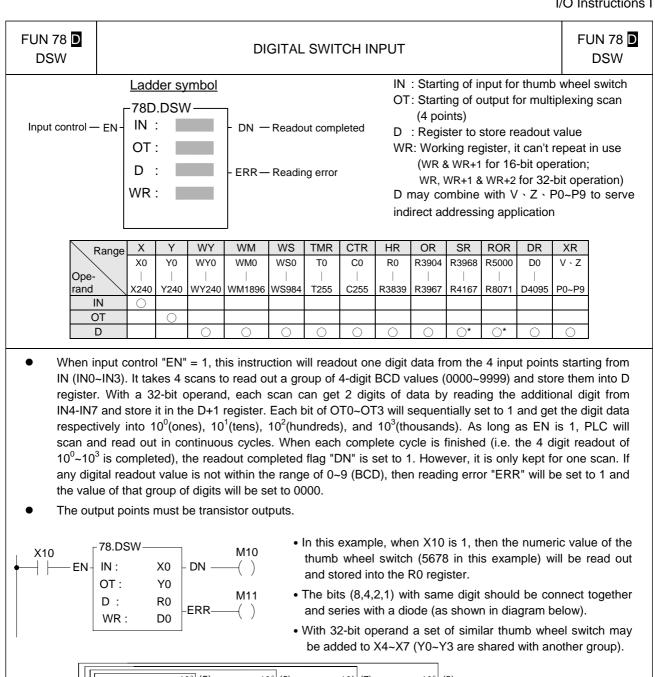

- If the intended refresh I/O signals of this instruction is beyond the range of I/O points specified on above table then PLC will be unable to operate and the M1931 error flag will be set to 1. (for example, if in a program, D=X11, N=10, which means X11 to X20 are to be immediately retrieved. Supposing the main unit is FBs-32MA, then its biggest input point is X19, and clearly X20 has already exceeded the main unit's input point number so under such case M1931 error flag will be set to 1).
- With this instruction, PLC can immediately refresh input/output signals. However, the delay of the hardware or the software filter impose on the I/O signals still exist. Please pay attention on this.

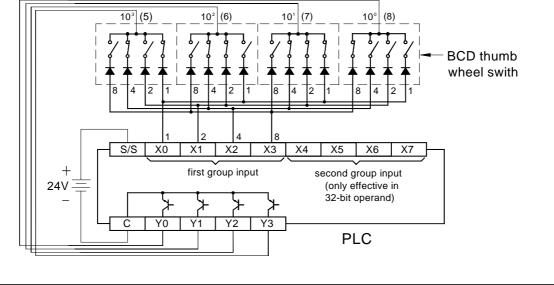
```
I/O Instructions I
```

TKEY					D	ECIMA	L- KE`	y inp	UT						FUN 76 TKEY
Input control -			der sy TKE1			— Key ir	action	D K D	L: star may	ister s ting co coml	toring bil to re bine v	key-in eflect t vith V olicatio	he inp ,Z,I	ut stat	us) to serv
	Y	Y	М	S	WY	WM	WS	TMR	CTR	HR	OR	SR	ROR	DR	XR
Range	X X0	Y0	MO	S0	WY0	WM0	WS0	TO	CIK C0	R0				-	V · Z
Ope-															
rand 🔪 IN	X240	Y240	M1896	S984	WY240	WM1896	WS984	T255	C255	R3839	R3967	R4167	R8071	D4095	P0~P9
D					0	0	0	0	0	0	0	O *	O *	0	0
KL		0	0	0											
 When in 10 input number 	nput co ut point r into D	ontrol s star) regis	"EN" = rting fr ster wh	egiste = 1, thi rom IN hile the	rs spec is instru I and p e key w	ified by l action wi ut the c ere dep	D. II moni correspo ressed	tor the onding . It wil	9]	out po	ints, it	is po	ssible	to en	ter 4 or 8
 When in 10 input number wait unt "ON" in (high di register digits m register number points corresp while t unchang other ke any inp will set the san 	nput cc tr point r into D til the in put poi igit is of can st nay be c, new r of the starting the con- ged ev ey is de ut poin to 1. C me time the only	ontrol s star p regis nput p int, an lder th ore up store key-il e D re g fro coil s rrespo ven if epress t is de Dnly o e. If n y one	"EN" = rting fr ster wh point h nd shift nd shift nd shift nd shift nd shift no num gister. of no num gister. of no sed the epress one of no re th taken	egiste = 1, thi om IN alle the as rele i in the v digits, en the ber v The I will g from key orrespo en it w ed (OI INO~IM han or . Belo	rs spec is instru I and p e key w eased, t e new n) . For and for e key n vill kick key-in s be re KL. Th is dep onding I vill retur N), ther N9 key ne is p w is a s	ified by luction wi	D. II moni orrespen ressed nitor the nto D re- bit oper- bit oper- full fill e olde the 10 on the s will s and the eleased o. As lo y-in fla- depress then the	tor the onding . It will be nex egiste and, E trand & the E st key) inpu ne 10 et to 7 remain d. Unti- ong as g KPF ssed a ne firs	e g t r) 3) / t) 1 1 5 8 t t t	Key- N0 ~	in IN9	0	1 BCE) [2) Code) [2 e 15

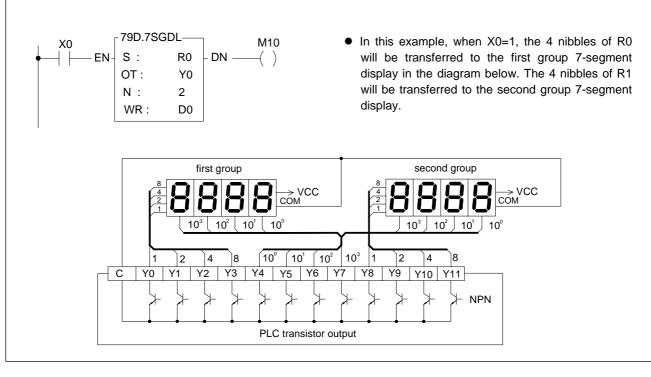

• The instruction at left represents the input point X0 with the number "0", X1 is represented by 1, ..., M0 records the action of X0, M1 records the action of X1 ..., and the input numerical values are stored in the R0 register.

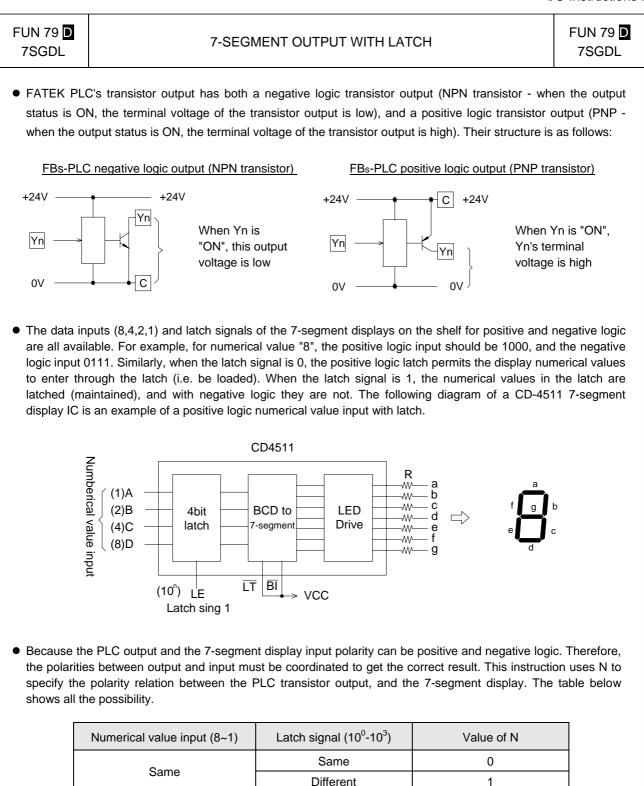



I/O Instructions I


FUN 77 D HKEY						HEX	KEY II	NPUT	-						FUN ⁻ HKI	
Execution contro	DI — EN	<mark>77[</mark>	- : :	•	- Nł	<p nu<br="" —=""><p fur<="" th="" —=""><th>·</th><th></th><th>5 (5 F 5 V</th><th>DT: Sta I D : Re (L: Sta VR: W</th><th>arting o key sca gister arting r orking combi</th><th>of digit an (4 p to stor elay fo registe ne with</th><th>al outp points) re key- pr key s er, it ca h V 、Z</th><th>out for in num status an't rep 2 \ P0~</th><th>ey scar multiple bers beat in -P9 to s</th><th>exing use</th></p></p>	·		5 (5 F 5 V	DT: Sta I D : Re (L: Sta VR: W	arting o key sca gister arting r orking combi	of digit an (4 p to stor elay fo registe ne with	al outp points) re key- pr key s er, it ca h V 、Z	out for in num status an't rep 2 \ P0~	ey scar multiple bers beat in -P9 to s	exing use
Rang	e X	Y	М	S	WY	WM	WS	TMR	CTR	HR	OR	SR	ROR	DR	XR	
	X0	Y0	MO	S0	WY0	WM0	WS0	Т0	C0	R0	R3904	R3968	R5000	D0	V 、 Z	
Ope-								 T055	0055		00007			 D 4005		
rand N	X240	Y240	W1896	5984	VVY240	WM1896	VVS984	T255	0255	K3839	K3967	K4167	K8071	D4095	F0~F9	
OT	0	\cap														
D					0	0	0	0	0	0	0	()*	*	0	\bigcirc	
KL		0	0	0												

- The numeric (0~9) key function of this instruction is similar as for the TKEY instruction. The hardware connection for TKEY and HKEY is different. For TKEY instruction each key have one input point to connect, while HKEY use 4 input points and 4 output points to form a 4x4 multiplex 16 key input. 4x4 means that there can be 16 input keys, so in addition to the 10 numeric keys, the other 6 keys can be used as function keys (just like the usual discrete input). The actions of the numeric keys and the function keys are independent and have no effect on each other.
- When execution control "EN" = 1, this instruction will scan the numeric keys and function keys in the matrix formed by the 4 input points starting from IN and the 4 output points starting from OT. For the function of the numeric keys and "NKP" output please refer to the TKEY instruction. The function keys maintain the key-in status of the A~F keys in the last 6 relays specified by KL (the first 10 store the key-in status of the numeric keys). If any one of the A~F keys is depressed, FKP (FO1) will set to 1. The OT output points for this instruction must be transistor outputs.
- The biggest number for a 16-bit operand is 4 digits (9999), and for 32-bit operand is 8 digits (99999999). However, there are only 6 function keys (A~F), no matter whether it is a 16-bit or 32-bit operand.





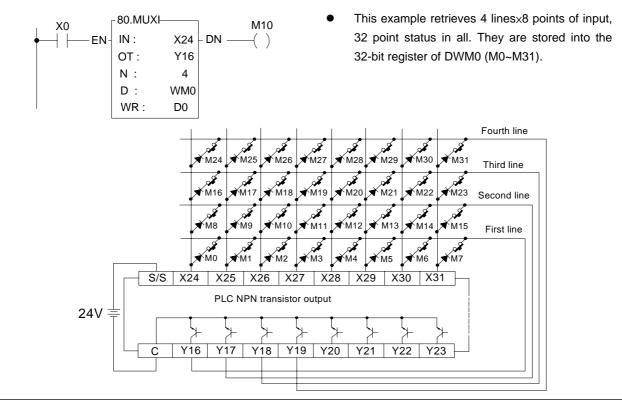
FUN 79 D 7SGDL				7-8	SEGMI	ENT	OUTF	PUT W	ITH L	АТСН					IN 79 D SGDL
Execution cont	rol — E	N - S C	9D.7S 6 : 9T :	symbol GDL	- dn -	- Outp	ut com	plete	OT N WR S m	displa : Starti : Spec : Work ay con	ayed ng num ify sign king reg nbine w	nber of al outp gister, it	scanni out and t can't i Z \ P0	(BCD) to ng outp polarity repeat ir ~P9 to s	ut of latch i use
Range	Υ	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К	XR
Ope- rand	Y0 Y240	WX0 WX240	WY0 WY240	WM0 WM1896	WS0 WS984	T0 T255	C0 C255	R0 R3839	R3840 R3903	R3904 R3967	R3968 R4167	R5000 R8071	D0 D4095	16-bit number	V \ Z P0~P9
S			0	\bigcirc	\bigcirc	0	0	0	0	0	0	0	0	0	0
OT	\bigcirc														
N														0~3	

- When input control "EN" = 1, the 4 nibbles of the S register, from digit 0 to digit 3, are sequentially sent out to the 4 output points, OT0~OT3. While output the digit data, the latch signal of that digit (OT4 corresponds to digit 0, OT5 corresponds to digit 1, etc...) at the same time is also sent out so that the digital value will be loaded and latched into the 7-segment display respectively.
- When in D (32-bit) instruction, nibbles 0~3 from the S register, and nibbles 0~3 from the S+1 register are transferred separately to OT0~OT3 and OT8~OT11. Because they are transferred at the same time, they can use the same latch signal. 16-bit instructions do not use OT8~OT11.
- As long as "EN" remains 1, PLC will execute the transfer cyclically. After each transfer of a complete group of numerical values (nibbles 0~3 or 0~7), the output completed flag "DN" will set to 1. However, it will only be kept for 1 scan.

• In the diagram above, CD4511 is used as an example. If use NPN output, the data input polarity is different to PLC, and its latch input polarity is the same as PLC, so N value should chosen as 2.

Different

Same


Different

2

3

FUN 80 MUXI					MUL	TIPLE	EX IN	PUT							1XI 1XI
Execution con	trol — EN	ا ^{.08} ٦	:		DN — E	xecutio	on com	pleted	OT: N: D: Dma	Multipl (must t Multipl Regist ay com	ex out be tran ex inpu er for s ibine w	ut point put poin sistor c ut lines storing <i>i</i> th V, 2 upplicat	nt nur output (2~8) result Z, P0~	nber point)	serve
Ran	A A	Y	WY	WM	WS	TMR	CTR	HR	OR	SR	ROR	DR	K	XR	
Ope- rand	ye X0 X240	Y0 Y240	WY0 WY240	WM0 WM1896	WS0 WS984	T0 T255	C0 C255	R0 R3839		R3968 R4167		D0 D4095	2 8	V ∖ Z P0~P0	
IN	0														
OT		0													
N			~	\sim		\sim	~		~	^ *	~ +	\sim	0	\sim	
D			0	\bigcirc	0	\bigcirc	\bigcirc	\cup	0	0*	0*	0		0	

- This instruction uses the multiplex method to read out N lines of input status from 8 consecutive input points (IN0~IN7) starting from the input point specified by IN. With this method we can obtain 8×N input status, but only need to use 8 input points and N output points.
- The multiplex scanning method goes through N output points starting from the OT output point. Each scan one of the N bits will set to 1 and the corresponding line will be selected. OT0 responsible for first line, while OT1 responsible for second line, etc. Until it read all the N lines the 8xN status that has been read out is then stored into the register starting at D, and the execution completed flag "DN" is set as 1 (but is only kept for one scanning period).
- With every scan, this instruction retrieves a line for 8 input status, so N lines require N scan cycles before they can be completed.

FUN 81 PLSO		PULSE OUTPUT											FUN PL	
Pause	control — control — F irection — C Or	EN - PAU -	Ladd 81D.F MD : Fr : PC : UY:or DY:or HO :	r CK	- O	UT— O N — O RR— E	utput		eted	Fr PC UY DY HO CK DR	: Pulse : Outp : Up pu : Dowr : Cumu (Ca : Pulse	e freque ut puls ulse ou n pulse ulative n be ne outpu own ou	e coun itput po output output ot assig it point utput po	t bint (MD=0). t point (MD=0 pulse registe
		Y	WX	WY	WM	WS	TMR	CTR	HR	OR	SR	ROR	DR	К
	Dongo						To				-			
	Range- Ope- and	Yn of Main Unit	WX0 WX240	WY0 WY240	WM0 WM1896	WS0 WS984	T0 T255	C0 C255	R0 R3839	R3904 R3967	R3968 R4167		D0 D4095	16/32-bit +/- number
	Ope-	Main												
	Dpe- and MD Fr	Main	 WX240		WM1896	 WS984		 C255	 R3839	 R3967	 R4167	 R8071	 D4095	+/- number
	Dpe- and MD Fr PC	Main Unit			WM1896	 WS984		C255	R3839	R3967	 R4167	 R8071		+/- number 0~1
	Dpe- and MD Fr PC UY [,] CK	Main Unit	 WX240		WM1896	 WS984		 C255	 R3839	 R3967	 R4167	 R8071	 D4095	+/- number 0~1 8~2000
	Dpe- and MD Fr PC	Main Unit	 WX240		WM1896	 WS984		 C255	 R3839	 R3967	 R4167	 R8071	 D4095	+/- number 0~1 8~2000

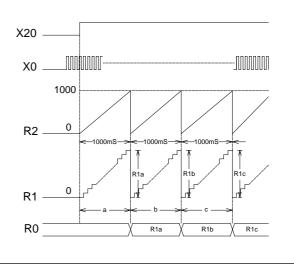
- When MD=0, this instruction performs the pulse output control as following:
- Whenever the output control "EN" changes from 0→1, it first performs the reset action, which is to clear the output flag "OUT" and "DN" as well as the pulse out register HO to be 0. It gets the pulse frequency and output pulse count values, and reads status of up and down direction "U/D", so as to determine the direction to be upward or downward. As the reset finished, this instruction will check the input status of pause output "PAU". No action will be taken if the pause output is 1 (output pause). If the PAU is 0, it will start to output the ON/OFF pulse with 50% duty at the frequency Fr to the UY(U/D=1) or DY(U/D=0) point. It will increment the value of HO register each time when a pulse is output, and will stop the output when HO register's pulse count is equal to or greater than the cumulative pulse count of PC register and set the output complete flag "DN" to 1. During the time when output pulse is transmitting the output transmitting flag "OUT" will be set to 1, otherwise it will be 0.
- Once it starts to transmit pulse, the output control "EN" should kept to 1. If it is changed to 0, it will stop the pulse sending (output point become OFF) and the flag "OUT" changes back to 0, but the other status or data will keep unchanged. However, when its "EN" changes again from 0 to 1, it will lead to a reset action and treat as a new start; the entire procedure will be restarted again.
- If you want to pause the pulse output and not to restart the entire procedure, the 'pause output' "PAU" input can be used to pause it. When "PAU" =1, this instruction will pause the pulse transmitting (output point is OFF, flag "OUT" change back to 0 and the other status or data keeps unchanged). As it waits until the "PAU" changes back from 1 to 0, this instruction will return to the status before it is paused and continues the pulse transmitting output.
- During the pulse transmission, this instruction will keep monitoring the value of pulse frequency Fr and output pulse count PC. Therefore, as long as the pulse output is not finished, it may allow the changing of the pulse frequency and pulse count. However, the up/down direction "U/D" status will be got only once when it takes the reset action ("EN" changes from 0→1), and will keep the status until the pulse output completed or another reset occur. That is to say, except that at the very moment of reset, the change of "U/D" does not influence the operation of this instruction.
- The main purpose of this instruction is to drive the stepping motor with the UY (upward) and DY (downward) two directional pulses control, so as to help you control the forward or reverse rotating of stepping motor. Nevertheless, if you need only single direction revolving, you can assign just one of the UY or DY (which will save one output point), and leaving the other output blank. In such case, the instruction will ignore the up/down input status of "U/D", and the output pulse will send to the output point you assigned.

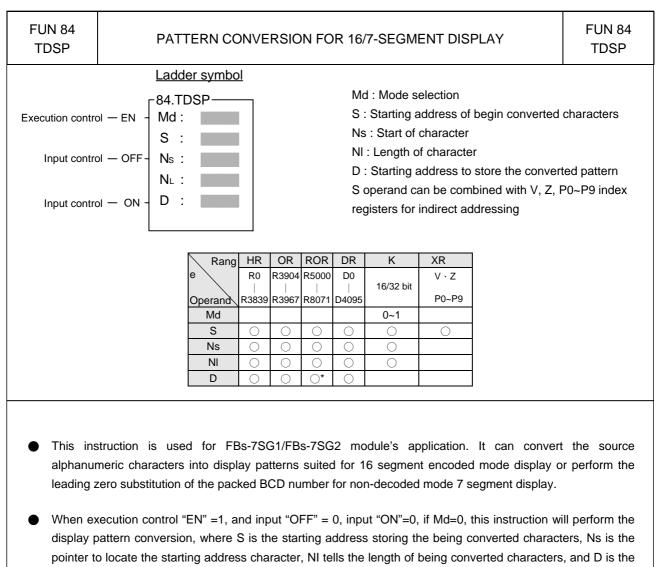
FUN 81 D PLSO	PULSE OUTPUT	FUN 81 D PLSO
	D=1, the pulse output will reflect on the control output DIR (pulse direction. DIR=1, up; D pulse output).	IR=0, down)
 This instimation main unition 	ruction can only be used once, and UY (CK) and DY (DR) must be transistor output point	t on the PLC
instructio will trans frequenc	ctive range of output pulse count PC for 16 bit operand is $0 \sim 32767$. For the 32 bit n), it is $0 \sim 2147483647$. If the PC value = 0, it is treated as infinite pulse count, and thi mit pulses without end with HO value and "DN" flag set at 0 all the time. The effective ra y (Fr) is $8 \sim 2000$. If the value PC or Fr exceeds the range, this instruction will not be car flag "ERR" will set to 1.	s instruction nge of pulse
	 In this example, the program controls the st 	epping motor
X0	-EN MD: 0 OUT OUT () to drive forward for 80 pulses (steps) at t	-
X1	Fr : R 0 M1 100Hz first, and then makes it turn reverses -PAU PC : R 1 DN the speed of 50Hz. Make sure that the up/do	-
X2	UY: Y 0 frequency Fr and the pulse count PC must I	
▶ -	-U/D DY : Y 1 ERR− the reset take action("EN" changes from 0→ HO : R 5	1).
	K Turn forward K Turn reverse Reset 100Hz going 80 steps Stop 50Hz going 40 steps	ps>∣
	enable re-start (finished) Reset Start	(finished)
Output enable		• •
Pause	Pause	
1 2036	X1••••	• •
Directior	X2 Forward	• •
Up-puls	e Y0	• •
Down-puls		
Under outpu	t MO	
Output done	• M1 • • • •	• •
Frequenc	y R0 100 / • • • • • • • • • • • • • • • • • •	• •
		••
Pulse to output	^{it} R1 80 40	• •
Output pulse cou	nt R5 0 1 2 • • • 75 76 77 78 79 80 0 1 2 •	• • 39 40

UN 82 PWM		PULSE WIDTH MODULATION												FUN PW
Execution	control — I	EN - 70	2.PW	symbo M	err	— Eri	ror flaç)	Tp :	Pulse p	767mS period 676mS	5) 5)		
Rar	nge Y	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К
Ope- rand	Yn of main unit		WY0 WY240	WM0 WM1896	WS0 WS984	T0 T255	C0 C255	R0 R3839	R3840 R3903	R3904 R3967	R3968 R4167	R5000 R8071	D0 D4095	0 32767
То		0	0	\bigcirc	0	0	\bigcirc	0	0	0	0	0	0	\bigcirc
		\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	0	0	0	0	0	0
Тр		\cup	\sim)										

• When execution control "EN" = 1, will send the pulse to output point OT with the "ON" state for To ms and period as Tp. OT must be a transistor output point on the main unit. When "EN" is 0, the output point will be OFF.

- The units for Tp and To are mS, resolution is 1 mS. The minimum value for To is 0 (under such case the output point OT will always be OFF), and its maximum value is the same as Tp (under such case the output point OT will always be on). If To > Tp there will be an error, this instruction will not be carried out, and the error flag "ERR" will set to 1.
- This instruction can only be used once.


FUN 83 SPD		SPEED DETECTION											F	FUN 83 SPD		
Detection co	ntrol —	- EN	۲ ⁸³	:	<u>ymbol</u>	- OVF ·	— Ove	erflow		TI: Sa (u	ampling Inits in	g durat	ion	speed ts	detecti	on
Ra	nge)	X	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	
Ope- rand	X		WX0 WX240	WY0 WY240	WM0 WM1896	WS0 WS984	T0 T255	C0 C255	R0 R3839			R3968 R4167			1 32767	
S	; (C														
Т	I		0	0	0	\circ	Ó	Ó	0	0	\circ	0	\circ	0	0	
)			0	\bigcirc	\bigcirc	0	0	0	0	0	○*	0*	\bigcirc		


- This instruction uses the interrupt feature of the 8 high speed input points (X0~X7) on the PLC main unit to detect the frequency of the input signal. Within a specific sampling time (TI), it will calculate the input pulse count for S input point, and indirectly find the revolution speed of rotating devices (such as motors).
- While use this instruction to detect the rotating speed of devices, The application should design to generate more pulse per revolution in order to get better result, but the sum of input frequency of all detected signals should under 5KHz, otherwise the WDT may occur.
- The D register for storing results uses 3 successive 16-bit registers starting from D (D0~D2). Besides D0 which is used to store counting results, D1 and D2 are used to store current counting values and sampling duration.
- When detection control "EN" = 1, it starts to calculate the pulse count for the S input point, which can be shown in D1 register. Meanwhile the sampling timer (D2) is switched on and keeps counting until the value of D2 is reach to the sampling period (TI). The final counted value is stored into the D0 register, and then a new counting cycle is started again. The sampling counting will go on repeating until "EN" = 0.
- Because D0 only has 16 bits, so the maximum count is 32767. If the sampling period is too long or the input pulse is too fast then the counted value may exceed 32767, under that case the overflow flag will set to 1, and the counting action will stop.
- Because the sampling period TI is already known and if every revolution of attached rotating device produces "n" pulses, then the following equation can be used to get the revolution

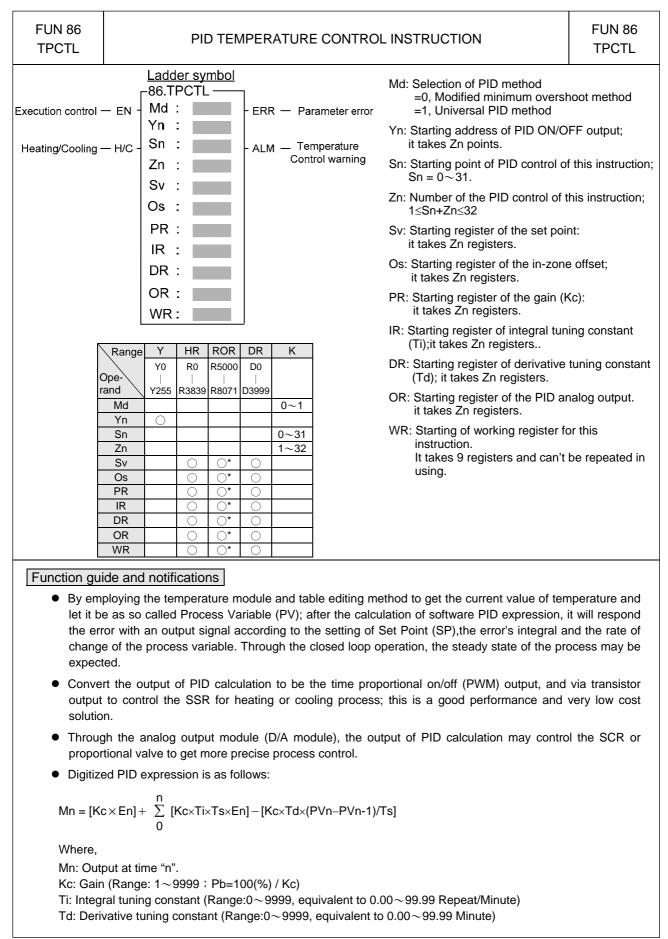
speed : N =
$$\frac{(D0) \times 60}{n \times TI} \times 10^3$$
 (rpm)

X20

X20
S : X 0
TI : 1000
D : R 0

 In the above example, if every revolution of the rotating device produces 20 pulses (n = 20), and the R0 value is 200, then the revolution per minute speed "N" is as

follows :
$$N = \frac{(200) \times 60}{60 \times 1000} \times 10^3 = 200 \text{ rpm}$$


starting address to store the converted result.

Byte 0 of S is the "1st" displaying character, byte 1 of S is the 2nd displaying character,.....

Ns is the pointer to tell where the start character is.

After execution, each 8-bit character of the source will be converted into the corresponding 16-bit display pattern.

- When input "OFF" = 1, all bits of display pattern will be 'off' if Md = 0, if Md=1, all BCD codes will be substituted by blank code (0F)
- When input "ON" = 1, all bits of display pattern will be 'on' if Md=0. If Md=1, all BCD codes will be substituted by code 8(all light).
- Please refer Chapter 16 "FBs-7SG display module" for more detail description.

FUN	86
TPC	ΤL

PID TEMPERATURE CONTROL INSTRUCTION

PVn : Process variable at time "n"

PVn_1: Process variable when loop was last solved

En: Error at time "n" ; E= SP – PVn

Ts: Solution interval for PID calculation (Valid value are 10, 20, 40, 80,160, 320; the unit is in 0.1Sec)

PID Parameter Adjustment Guide

- As the gain (Kc) adjustment getting larger, the larger the proportional contribution to the output. This can obtain a sensitive and rapid control reaction. However, when the gain is too large, it may cause oscillation. Do the best to adjust "Kc" larger (but not to the extent of making oscillation), which could increase the process reaction and reduce the steady state error.
- Integral item may be used to eliminate the steady state error. The larger the number (Ti, integral tuning constant), the larger the integral contribution to the output. When there is steady state error, adjust the "Ti" larger to decrease the error.

When the "Ti" = 0, the integral item makes no contribution to the output.

For exam. , if the reset time is 6 minutes, Ti=100/6=17 ; if the integral time is 5 minutes, Ti=100/5=20.

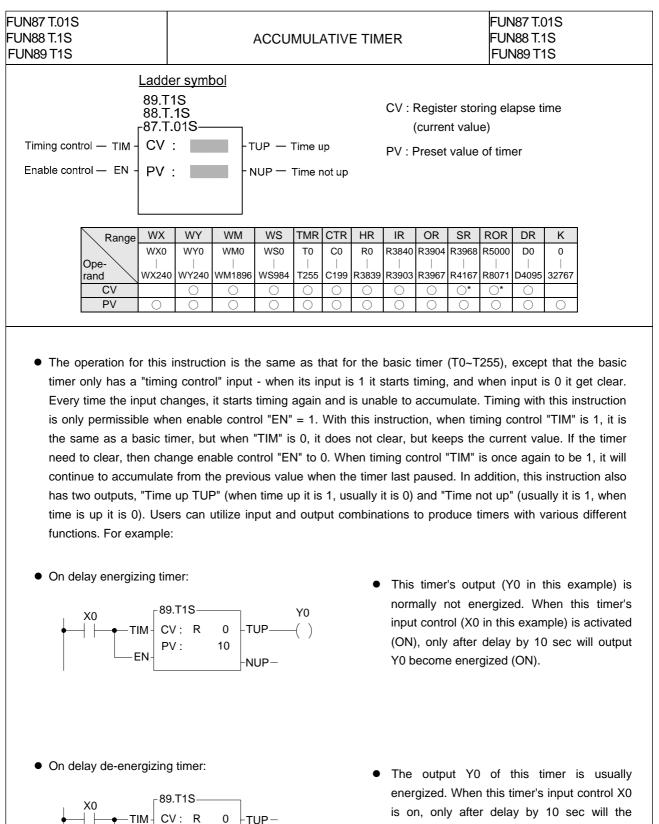
Derivative item may be used to make the process smoother and not too over shoot. The larger the number (Td, derivative tuning constant), the larger the derivative contribution to the output. When there is too over shoot, adjust the "Td" larger to decrease the amount of over shoot. When the "Td" = 0, the derivative item makes no contribution to the output.

For exa, if the rate time is 1 minute, then the Td = 100; if the differential time is 2 minute, then the Td = 200.

- Properly adjust the PID parameters can obtain an excellent result for temperature control.
- The default solution interval for PID calculation is 4 seconds (Ts=40)
- The default of gain value (Kc) is 110, where Pb=1000/110×0.1% = 0.91%; the system full range is 1638°, it means 1638×0.91 = 14.8° to enter proportional band control.
- The default of integral tuning constant is 17, it means the reset time is 6 minutes (Ti=100/6=17).
- The default of derivative tuning constant is 50, it means the rate time is 0.5 minutes (Td=50).
- When changing the PID solution interval, it may tune the parameters Kc, Ti, Td again.

Instruction guide

- FUN86 will be enabled after reading all temperature channels.
- When execution control "EN" = 1, it depends on the input status of H/C for PID operation to make heating (H/C=1) or cooling (H/C=0) control. The current values of measured temperature are through the multiplexing temperature module ; the set points of desired temperature are stored in the registers starting from Sv. With the calculation of software PID expression, it will respond the error with an output signal according to the setting of set point, the error's integral and the rate of change of the process variable. Convert the output of PID calculation to be the time proportional on/off (PWM) output, and via transistor output to control the SSR for heating or cooling process; where there is a good performance and very low cost solution. It may also apply the output of PID calculation (stored in registers starting from OR), by way of D/A analog output module, to control SCR or proportional valve, so as to get more precise process control.
- When the setting of Sn, Zn (0 ≤ Sn ≤ 31 and 1 ≤ Zn ≤ 32, as well as 1 ≤ Sn + Zn ≤ 32) comes error, this instruction will not be executed and the instruction output "ERR" will be ON.


This instruction compares the current value with the set point to check whether the current temperature falls within deviation range (stored in register starting from Os). If it falls in the deviation range, it will set the in-zone bit of that point to be ON; if not, clear the in-zone bit of that point to be OFF, and make instruction output "ALM" to be ON.

Г

FUN 86 TPCTL	PID TEMPERATURE CONTROL INSTRUCTION	FUN 86 TPCTL
point_o values will set	nean time, this instruction will also check whether highest temperature warning (the reg f highest temperature warning is R4008). When successively scanning for ten tim of measured temperature are all higher than or equal to the highest warning set point, to be ON and instruction output "ALM" will be on. This can avoid the safety problem ature out of control, in case the SSR or heating circuit becomes short.	es the current the warning bit
or the register desired	struction can also detect the unable to heat problem resulting from the SSR or heating ci obsolete heating band. When output of temperature control turns to be large power r) successively in a certain time (set in R4007 register), and can not make current tem range, the warning bit will set to be ON and instruction output "ALM" will be ON.	(set in R4006 perature fall in
т w	arting of working register for this instruction. It takes 9 registers and can't be repeated in he content of the two registers WR+0 and WR+1 indicating that whether the current tem ithin the deviation range (stored in registers starting from Os). If it falls in the deviation p-zone bit of that point will be set ON; if not, the in-zone bit of that point will be cleared O	perature falls range, the
Bi	t definition of WR+0 explained as follows: Bit0=1, it represents that the temperature of the Sn+0 point is in-zone Bit15=1, it represents that the temperature of the Sn+15 point is in-zone. t definition of WR+1 explained as follows: Bit0=1, it represents that the temperature of the Sn+16 point is in-zone Bit15=1, it represents that the temperature of Sn+31 point is in-zone.	
w v	The content of the two registers WR+2 and WR+3 are the warning bit registers, they whether there exists the highest temperature warning or heating circuit opened. t definition of WR+2 explained as follows: Bit0=1, it means that there exists the highest warning or heating circuit opened at the Sr Bit15=1, it means that there exists the highest warning or heating circuit opened at the Sr	n+0 point
Bi	t definition of WR+11 explained as follows:	
	Bit0=1, it means that there exists the highest warning or heating circuit opened at the Si Bit15=1, it means that there exists the highest warning or heating circuit opened at the tegisters of WR+4 \sim WR+8 are used by this instruction.	
● It need	s separate instructions to perform the heating or cooling control.	
Specific reg	gisters related to FUN86	
● R4005 :	The content of Low Byte to define the solution interval between PID calculation =0, perform the PID calculation every 1 seconds. =1, perform the PID calculation every 2 seconds. =2, perform the PID calculation every 4 seconds. (System default) =3, perform the PID calculation every 8 seconds. =4, perform the PID calculation every 16 seconds. ≥5, perform the PID calculation every 32 second.	
	The content of High Byte to define the cycle time of PID ON/OFF (PWM) output. =0 · PWM cycle time is 1 seconds. =1 · PWM cycle time is 2 seconds. (System default) =2 · PWM cycle time is 4 seconds. =3 · PWM cycle time is 8 seconds. =4 · PWM cycle time is 16 seconds. ≥5 · PWM cycle time is 32 second.	
when Note 2: The s by th	n changing the value of R4005, the execution control "EN" of FUN86 must be set at 0. execution control "EN" =1, it will base on the latest set point to perform the PID calculat smaller the cycle time of PWM, the more even can it perform the heating. However, th e PLC scan time will also become greater. For the best control, it can base on the sca just the solution interval of PID calculation and the PWM cycle time.	ion. e error caused

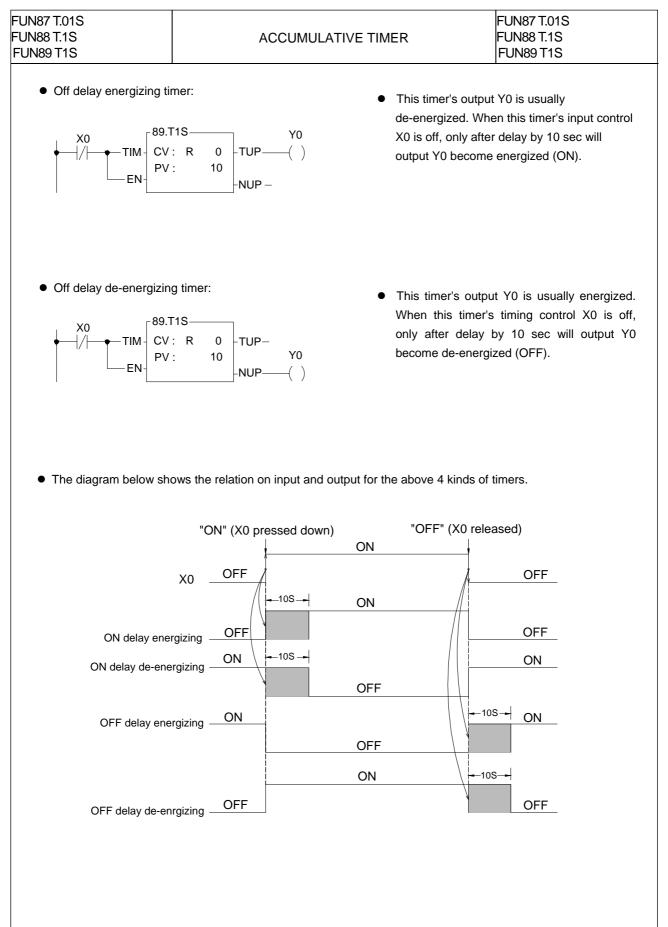
FUN 86 TPCTL	PID TEMPERATURE CONTROL INSTRUCTION	FUN 86 TPCTL
● R4006:	The setting point of large power output detection for SSR or heating circuit opened, or obsolete. The unit is in % and the setting range falls in $80 \sim 100(\%)$; system default is	-
● R4007:	The setting time to detect the continuing duration of large power output while SSR or h opened, or heating band obsolete. The unit is in second and the setting range falls in (seconds); system default is 600 (seconds).	
• R4008:	The setting point of highest temperature warning for SSR, or heating circuit short det unit is in 0.1 degree and the setting range falls in $100 \sim 65535$; system default is 3500 (
• R4012:	Each bit of R4012 to tell the need of PID temperature control. Bit0=1 means that 1 st point needs PID temperature control. Bit1=1 means that 2 nd point needs PID temperature control. Bit15=1 means that 16 th point needs PID temperature control.	
	(The default of R4012 is FFFFH)	
• R4013:	Each bit of R4013 to tell the need of PID temperature control. Bit0=1 means that 17 th point needs PID temperature control. Bit1=1 means that 18 th point needs PID temperature control.	
	Bit15=1 means that 32 th point needs PID temperature control. (The default of R4013 is FFFFH)	
bit of R	execution control "EN"=1 and the corresponding bit of PID control of that point is ON (co 24012 or R4013 must be 1), the FUN86 instruction will perform the PID operation and re tion with the output signal.	•
	execution control "EN"=1 and the corresponding bit of PID control of that point is OFF (co 4012 or R4013 must be 0), the FUN86 will not perform the PID operation and the output OFF.	-
	der program may control the corresponding bit of R4012 and R4013 to tell the FUN86 to berform the PID control, and it needs only one FUN86 instruction.	to perform o

Cumulateive Timer Instructions

Y0

)

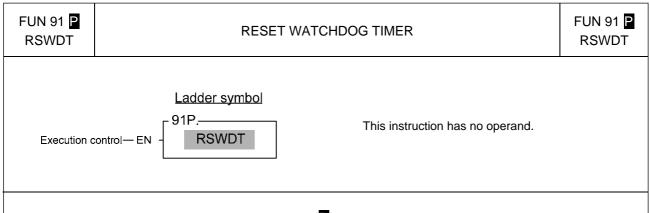
10


-NUP-

PV:

FN

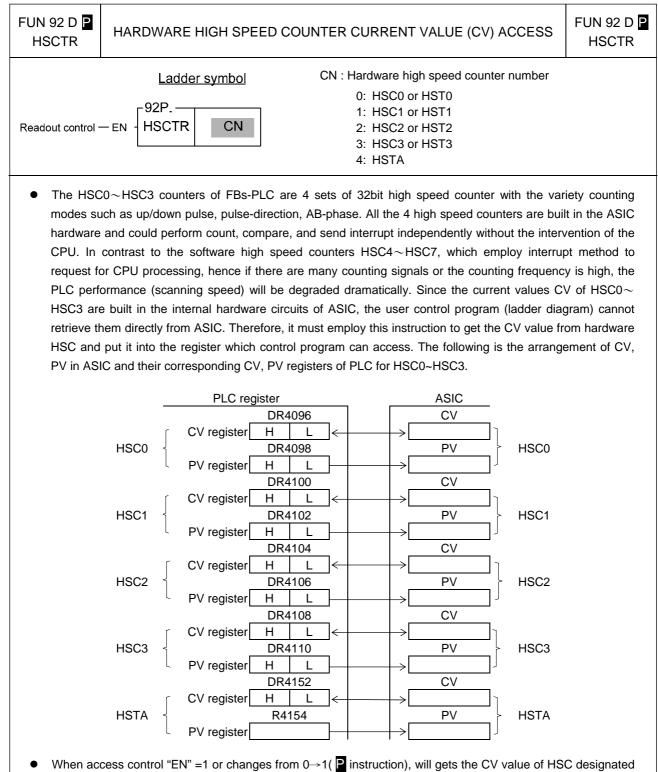
output become de-energized (OFF).


Cumulative Timer Instructions

Watchdog Timer Instructions

FUN 90 P WDT	WATCHDOG TIMER	FUN 90 P WDT
Execution contro	Ladder symbol N : The watchdog time. The range of N is 5 N = M WDT N WDT N in 10mS (i.e. 50ms~1.2 sec)	5~120, unit

- When execution control "EN" = 1 or transition from 0 to 1(☐ instruction), will set the watchdog time to Nx10ms. If the scan time exceeds this preset time, PLC will shut down and not execute the application program.
- The WDT feature is designed mainly as a safety consideration from the system view for the application. For example, if the CPU of PLC is suddenly damaged, and there is no way to execute the program or refresh I/O, then after the WDT time expired, the WDT will automatically switch off all the I/Os, so as to ensure safety. In certain applications, if the scan time is too long, it may cause safety problems or problems of non-conformance with control requirements. This instruction can used to establish the limitation of the scan time that you require.
- Once the WDT time has been set it will always be kept, and there is no need to set it again on each scan. Therefore, in practice this instruction should use the **P** instruction.
- Default WDT time is 0.25 sec.
- For the operation principles of WDT please refer to the RSWDT(FUN 91) instruction.

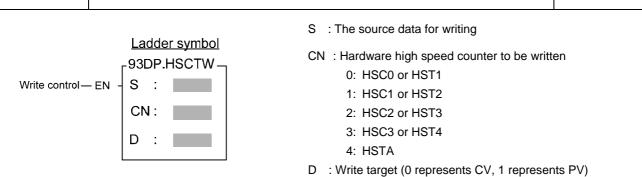


- When execution control "EN" = 1 or from 0 to 1 (p instruction), the WDT timer will be reset (i.e. WDT will start timing again from 0).
- The functions of WDT have already been described in FUN90 (WDT instruction). The operation principles of watch dog timer are as follows:

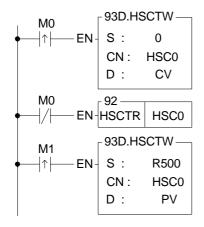
The watchdog timer is normally implemented by a hardware one-shot timer (it can not be software, otherwise if CPU fail, the timer becomes ineffective, and safeguards are quite impossible). "One-shot" means that after triggered the timer once, the timing value will immediately be reset to 0 and timing will restart. If WDT has begun timing, and never triggered it again, then the WDT timing value will continue accumulating until it reach the preset value of N, at that time WDT will be activated, and PLC will be shut down. If trigger the WDT once every time before the WDT time N has been reached, then WDT will never be activated. PLC can use this feature to ensure the safety of the system. Each time when PLC enters into system housekeeping after finished the program scanning and I/O refresh, it will usually trigger WDT once, so if the system functions normally and scan time does not exceed WDT time then WDT is never activated. However, if CPU is damaged and unable to trigger WDT, or the scan time is too long, then there will not be enough time to trigger WDT within the period N, WDT will be activated and will shut off PLC.

 In some applications, when you set the WDT time (FUN90) to desire, the scan time of your program in certain situations may temporarily exceed the preset time of WDT. This situation can be anticipated and allowed for, and you naturally do not wish PLC to shut down for this reason. You can use this instruction to trigger WDT once and avoid the activation of WDT. This is the main purpose of this instruction.

High Speed Counting/Timing Instruction



- When access control "EN" =1 or changes from 0→1(P instruction), will gets the CV value of HSC designated by CN from ASIC and puts into the HSC corresponding CV register (i.e. the CV of HSC0 will be read and put into DR4096 or the CV of HSC1 will be read and put into DR4100).
- Although the PV within ASIC has a corresponding PV register in CPU, but it is not necessary to access it (actually it can't be) for that the PV value within ASIC comes from the PV register in CPU.
- HSTA is a timer, which use 0.1ms as its time base. The content of CV represents elapse time counting at 0.1mS tick.
- For detailed applications, please refer to Chapter 10 "The high speed counter and high speed timer of FBs-PLC".


FUN 93 D HSCTW

HARDWARE HIGH SPEED COUNTER CURRENT VALUE AND PRESET VALUE WRITING

FUN 93 D P HSCTW

- Please refer first to FUN92 for the relation between the CV or PV value of HSC0~HSC3 and HSTA within ASIC and their corresponding CV and PV registers in CPU.
- When write control "EN"=1 or changes from 0→1 (p instruction), it writes the content of CV or PV register of high speed counter designed by CN of CPU, to the corresponding CV or PV of HSC within ASIC.
- It is quit often to set the PV value for most application program, When the count value reaches the preset value, the counter will send out interrupt signal immediately. By way of the interrupt service program, you can implement different kinds of precision counting or positioning control.
- When there is an interrupt of power supply for FBs-PLC, the values of current value registers CV of HSC0~ HSC3 within ASIC will be read out and wrote into the HSC0~HSC3 CV registers (with power retentive function) of CPU automatically. When power comes up, these CV values will be restored to ASIC. However, if your application demands that when power is on, the values should be cleared to 0 or begin counting from a certain value, then you have to use this instruction to write in the CV value for HSC in ASIC.
- When write a non-zero value into the PV register of HSTA will cause the HSTAI interrupt subroutine to be executed for every PV × 0.1ms.
- For detailed applications, please refer Chapter 10 "The high speed counter and high speed timer of FBs-PLC".

- As the program in the left diagram, when M0 changes from 0→1, it clears the current value of HSC0 to 0, and writes into ASIC hardware through FUN93.
- When M0 is 0, it reads out the current counting value.
- When M1 changes from 0→1, it moves DR500 to DR4098, and writes the preset value into ASIC hardware through FUN93.
- Whenever the current value equals to the DR500, The HSC0I interrupt sub program will be executed.

Report Printing Instructions

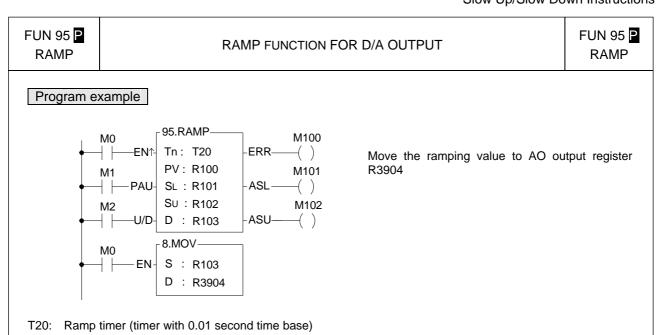
ASCWR					A	SCII	WRIT	E							FUN 9 ASC	
Output contro Pause contro Abort outpu	ol — EN - − PAU -	-PAU - Pt : ERR - Error S : Starting register of file data. Pt : Image: ERR - Error Pt : Starting working register for t instance. It taken up 8 register									e usa a. or thi giste	ige. s instruc s and c				
	Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	-	K	I	
	Ope-	WX0	WY0	WM0	WS0	Т0 	C0	R0		R3904						
	rand \ MD	WX240	WY240	WM1896	WS984	T255	C255	R3839	R3903	8 R3967	R4167	7 R8071	I D409	05 1	$\frac{1}{2}$	
	S	0	0	0	0	0	0	0	0	0	 *	○ ○*	0		1	
	Pt		0	0	0	0	0	0		0	0	0	0			
-	ation of Ch / by change etails descri	hapter e the va	14 "AS alue of	CII func data re	ction ap gisters.	plicatio Howe	on".). ver, tl	lf nec ne edi	essar ted da	y the ata mu	user o Ist be	can al follow	so eo / the /	dit the ASCI	I file form	file nat
 (the definition of the construction o	y by change etails descri to 1. If th	napter e the va ibed in e entire of this he exen	14 "AS alue of chapte e file is instruc cution, the ac	CII func data re- r 14), ot correctl ction is c until fini tion flag	tion ap gisters. herwise y and s of positiv	plication Howe this in uccess ve edg e trans	on".). ver, tl instruc sfully ge trig smissi	If nec ne edi ction w transn gered	essar ted da vill hal nitted, . On the er	y the ata mu t the tr then t then t nce "El	user of ist be ransm the ou NU" ch e then	can al follow ission itput is nange the e	so ec the a and s com s from	dit the ASCI set the plete m 0-	e ASCII I file form the error f and and "[-1 then s comple	file nat lag DN" this ted
 (the definition of the end of the e	y by change etails descri- to 1. If th o 1. pontrol input tion starts to the transm	napter e the va ibed in e entire of this the exec hission, it chang an be re	14 "AS alue of chapte e file is instruc cution, the ac ge back	CII func data re r 14), ot correctl ction is c until fini tion flag < to 0.	tion ap gisters. herwise y and s of positiv shed th "ACT"	ve edg will be	on".). ver, tl nstruc sfully ge trig smissi kept kept	If nec ne edi ction w transn gered on of at 1 a be exe	essar ted da vill hal nitted, . On the er Il the cuted	y the ata mu t the ti then t then t then the time. (user of ist be ransm the ou NU" ch e then Only w	can al follow ission itput is hange the e then c	so ed the and s corr s fror xecut putput	dit the ASCI set the plete m 0- tion is t pau	e ASCII I file form the error f ad and "I -1 then s comple se, error	file nat flag DN" this ted , or
 (the definition of the end of the e	y by change etails descri- to 1. If th o 1. ontrol input tion starts to the transmoccurs, will struction ca	napter e the va ibed in e entire of this the exe nission, it chang an be re user to r	14 "AS alue of chapte e file is instruc cution, the ac ge back epeated make s n exect	CII func data rea r 14), ot correctl ction is c until fini tion flag to 0. dly used ure the r	tion ap gisters. herwise y and s of positive shed the "ACT" I, but on right execute the paus	ve edg we edg will be ally one ecution	on".). ver, tl instruc sfully ge trig smissi kept kept will t n sequ	If nec ne edi ction w transn gered on of at 1 a be exe uence. 1, this	essar ted da vill hal nitted, . On the er Il the cuted	y the ata mu t the tr then t nce "Ef ntire fil- time. ((trans	user of ransm the ou NU" ch e then Dnly w	can al follow ission itput is nange the e /hen c	so ed the z and s com s fror execut butput	dit the ASCI set the plete m 0	e ASCII I file form the error f ad and "[-1 then - s comple se, error in time.]	file nat lag DN" this ted , or t is
 (the definition of the second secon	y by change etails descri- to 1. If th o 1. ontrol input tion starts to the transmo occurs, will struction ca ligation of u	napter e the va ibed in e entire of this he exec hission, it chang an be re iser to r tion is in e transi	14 "AS alue of chapte e file is instruc cution, the ac ge back epeated make s n exect missior	CII func data reg r 14), ot correctl ction is c until fini tion flag to 0. dly used ure the r ution, if t n when t	tion ap gisters. herwise y and s of positiv shed th "ACT" I, but on right exe the paus the paus	ve edg e trans will be e "PA se "PA port "AB	on".). ver, th instruct sfully ge trig smissi e kept e will b h sequ U" is U" is U" is	If nec ne edi ction w transn gered on of at 1 a be exe uence. 1, this cks to 1, this	essar ted da vill hal nitted, . On the er Il the cuted s instru 0.	y the ata mu t the ti then tire file time. ((trans	user of ist be ransm the ou NU" ch e then Dnly w smit da	can al follow ission itput is hange the e vhen c ata) at	so ed the z and s com s from xecut butput	dit thi ASCI set the plete m 0– tion is t pau certa	e ASCII I file form the error f ad and "I a and "I a comple se, error in time. I ssion of	file nat lag DN" this ted , or t is file
 (the definition of the second secon	y by change etails descri- to 1. If th o 1. ontrol input tion starts to the transmoccurs, will estruction ca ligation of u this instruct t will resum	napter e the va ibed in e entire of this the exe hission, it chang an be re iser to r cion is in e transi tion is i n it is ab	14 "AS alue of chapte e file is instruc cution, the ac ge back epeated make s n exect missior in exec	CII func data rea r 14), ot correctl ction is c until fini tion flag to 0. dly used ure the r ution, if t n when t cution, if ake next	tion ap gisters. herwise y and s of positive shed the "ACT" I, but on right exec the paus the paus the abc instruct	plication Howe's, this is uccess we edge trans will be ally one ecution se "PA se "PA ort "AB ion for	on".). ver, th instruct sfully ge trig smissi kept kept will th sequ U" is U" ba ST" is r exec	If nec ne edi ction w transn gered on of at 1 a be exe uence. 1, this cks to 1, this ution.	essar ted da vill hal nitted, . On the er Il the cuted cuted cuted s instru 0.	y the ata mu t the tr then t note "Eff time. ((trans uction uction	user of ist be ransm the ou NU" ch e then Dnly w smit da will pa will a	can al follow ission itput is nange the e /hen c ata) at ause th	so ed the z and s com s from xecut butput any he tra	dit th ASCI set th plete m 0	e ASCII I file form the error f ad and "I a and "I a comple se, error in time. I ssion of	file nat lag DN" this ted , or t is file
 (the definition of the second secon	y by change etails descri- to 1. If the o 1. ontrol input tion starts to the transmoccurs, will estruction ca- ligation of u this instruct t will resum this instruct ca, and ther	napter e the va ibed in e entire of this the exe hission, it chang an be re iser to r cion is in e transi tion is i n it is ab	14 "AS alue of chapte e file is instruc cution, the ac ge back epeated make s n exect missior in exec	CII func data rea r 14), ot correctl ction is c until fini tion flag to 0. dly used ure the r ution, if t n when t cution, if ake next	tion ap gisters. herwise y and s of positive shed the "ACT" I, but on right exec the paus the paus the abc instruct	plication Howe's, this is uccess we edge trans will be ally one ecution se "PA se "PA ort "AB ion for	on".). ver, th instruct sfully ge trig smissi kept kept will th sequ U" is U" ba ST" is r exec	If nec ne edi ction w transn gered on of at 1 a be exe uence. 1, this cks to 1, this ution.	essar ted da vill hal nitted, . On the er Il the cuted cuted cuted s instru 0.	y the ata mu t the tr then t note "Eff time. ((trans uction uction	user of ist be ransm the ou NU" ch e then Dnly w smit da will pa will a	can al follow ission itput is nange the e /hen c ata) at ause th	so ed the z and s com s from xecut butput any he tra	dit th ASCI set th plete m 0	e ASCII I file form the error f ad and "I a and "I a comple se, error in time. I ssion of	file nat lag DN" this ted. , or t is file

FUN 94 ASCWR	ASCII WRITE	FUN 94 ASCWR
: (signals: This signal is control by CPU, it is applied in ASCWR MD:0 ON, it represents that the RTS (connect to the CTS of PLC) of the printer is "False". I.e. the printer is not ready or abnormal. OFF, it represents that the RTS of the Printer is "True"; Printer is Ready.	
	sing the M1927 associates with timer can detect if the printer is abnormal or not.	
Note: Ot		

Slow Up/Slow Down Instructions

UN 95 P RAMP			RA	MP FU	NCTI	ON F(OR D/	a ou ⁻	ΓPUT					N 95 RAMF
Ramp control —El	-95 NU - Tr P'	dder s <u>i</u> 5P.RAM n I V :	-	-ERR —		PV : S∟ :	or the Lowe	et value increr r limit v floor v r limit v	of rar nent v value value). value).	np tim alue of			0.01 sec second	ond)
Pause control — F lp/Down output — (Su	J :		- ASL — - ASU —		D+1 : S _U , S	: Regis : Work	ing reg I be po	ring cu ister sitive (or nega		g value alue w	e. hen incor	porate
lp/Down output — נ	J/D - D	J :	WM			D+1 : S _U , S	: Regis : Worki ∟ coulc	iter sto ing reg I be po	ring cu ister sitive (or negation.		-		porate
		WY WY0	WM WM0 WM1896	- ASU—		D+1: S _U , S with <i>J</i> CTR C0	Regis Worki ∟ coulc AO mc	iter sto ing reg l be po dule a IR R3840	ring cu ister sitive o pplicat OR R3904	or negation.	ROR R5000	alue w	hen incor	
Ip/Down output — 1 Range Ope- rand Tn		WY WY0	WM0	- ASU— WS WS0	TMR T0 T255	D+1: S _U , S with <i>J</i> CTR C0	Regis Worki ∟ coulc AO mc HR R0	iter sto ing reg l be po dule a IR R3840	ring cu ister sitive o pplicat OR R3904	or negation.	ROR R5000	alue w	hen incor K 16-bit	
Ip/Down output — 1 Range Ope- rand Tn PV	WX WX0 WX240	WY WY0	WM0 WM1896	- ASU— WS WS0	TMR T0 1255	D+1: S _U , S with <i>J</i> CTR C0	Regis Worki ∟ coulc AO mc HR R0	iter sto ing reg l be po dule a IR R3840	ring cu ister sitive o pplicat OR R3904 R3967	or negation.	ROR R5000	alue w DR D0 D4095	hen incor K 16-bit	
Ip/Down output — 1 Range Ope- rand Tn	U/D - D WX WX0 WX240	WY WY0	WM0	- ASU— WS WS0	TMR T0 T255	D+1: S _U , S with <i>J</i> CTR C0	Regis Worki ∟ coulc AO mc HR R0	iter sto ing reg l be po dule a IR R3840	ring cu ister sitive o pplicat OR R3904 R3967	or negation.	ROR R5000	alue w DR D0 D4095	hen incor K 16-bit	

Description


- Tn must be a 0.01 sec time base timer and never used in other part of program.
- PV is the preset value of ramp timer. Its unit is 10ms (0.01 second).
- When input control "ENU" changes from $0 \rightarrow 1$, it first reset the timer Tn to 0.

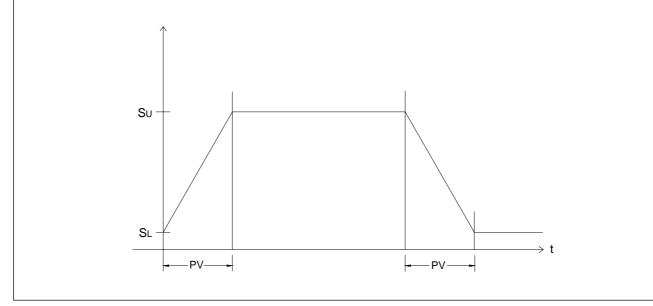
When "U/D"=1 it will load the value of SL to register D. And when M1974 = 0 it will be increased by S_U-S_L / PV every 0.01 sec or when M1974 = 1 it will increase by PV every 0.01 sec. When the D value reaches the S_U value the output "ASU" =1.

When "U/D"=0 it will load the value of S_U to register D. When M1974 = 0 it will be decreased by S_U-S_L / PV every 0.01 sec or when M1974 = 1 it will be decreased by PV every 0.01 sec. When the D value reaches the S_L value the output "ASL" =1.

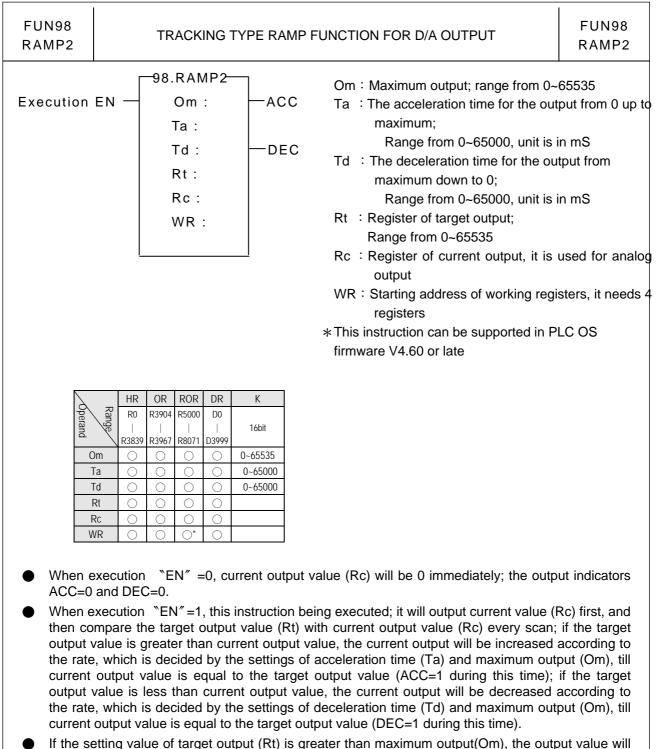
- The ramping direction(U/D) is determined at the time when input control "ENU" changes from 0→1. After the output D start to ramp, the change of U/D is no effect.
- If it is required to pause the ramping action, it must let the input control "PAU" = 1; when "PAU"=0, and the ramping action is not completed, it will continue to complete the ramping action.
- The value of S_U must be larger than S_L, otherwise the ramp function will not be performed, and the output "ERR" will set to 1.
- This instruction use the register D to store the output ramping value; if the application use the D/A module to send the speed command, then speed command can be derived from the RAMP function to get a more smooth movement.
- In addition to use register D to store the ramping value, this instruction also used the register D+1 to act as internal working register; therefore the other part of program can not use the register D+1.

Slow Up/Slow Down Instructions

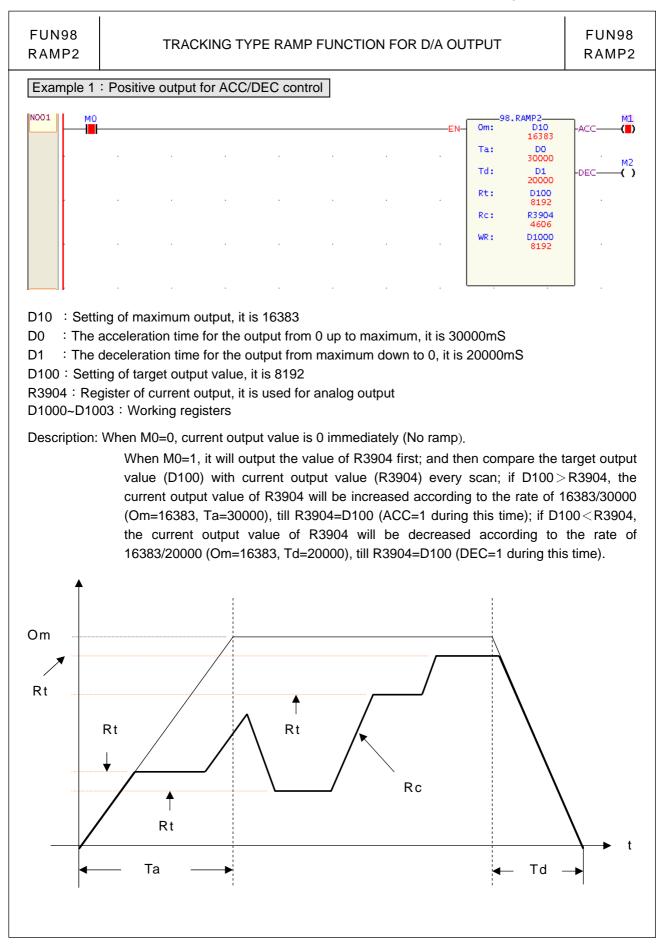
R100: preset value of ramp timer (the unit is 0.01 second, 100 for a second).

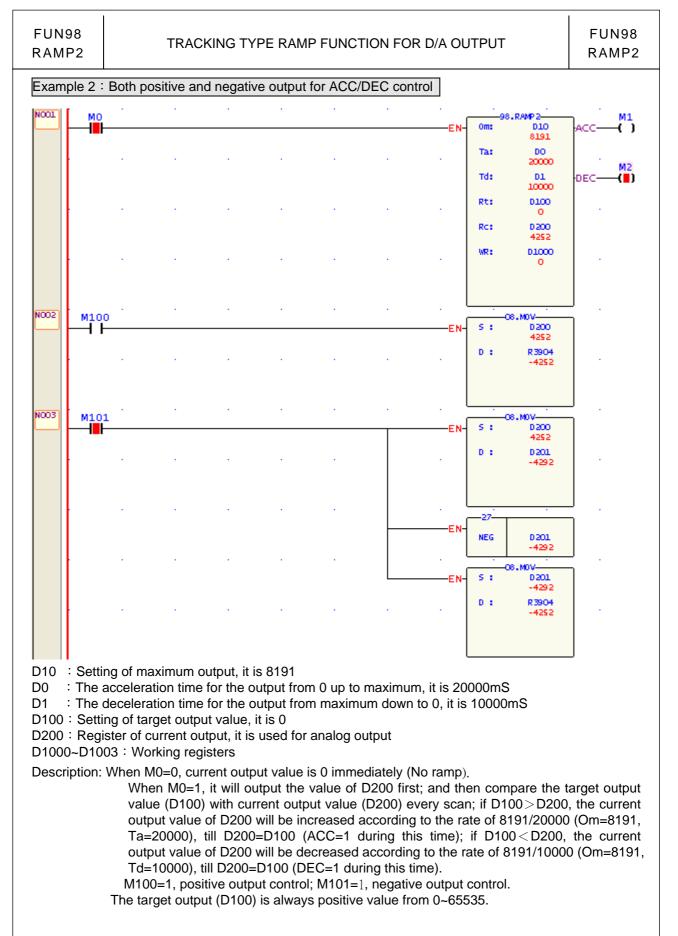

R101: Lower limit value.

R102: Upper limit value.

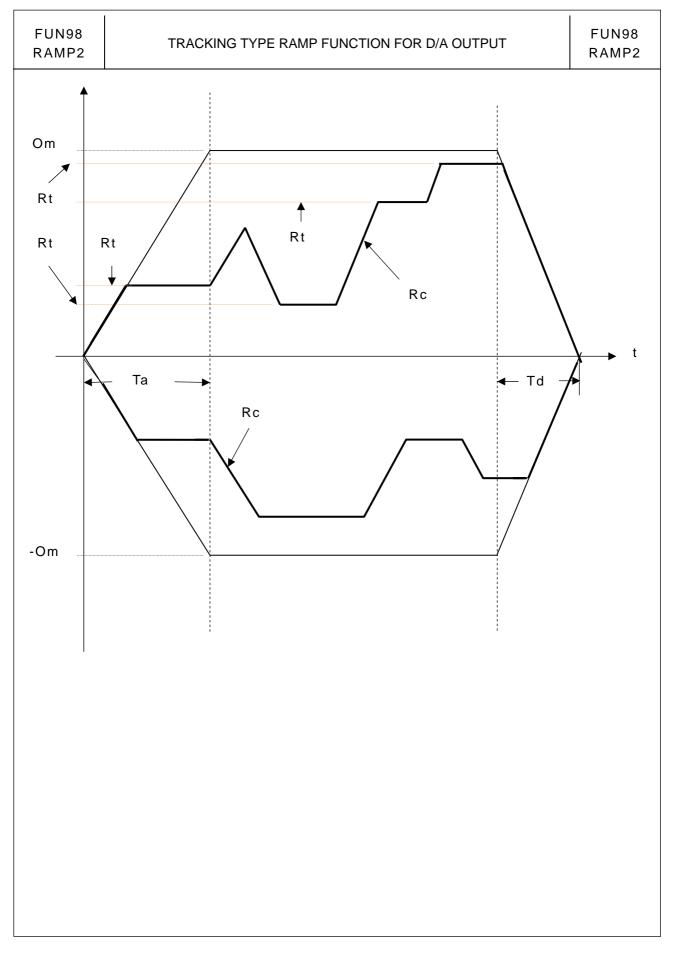

R103: Register storing current ramp value.

R104: Working register

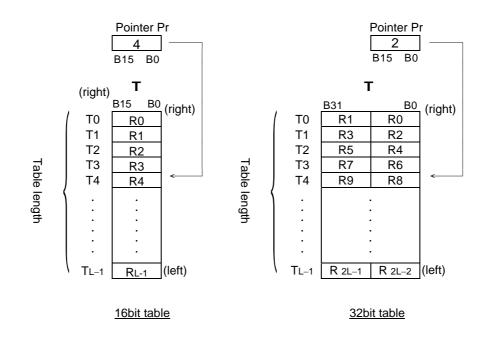

- If M1974=0, When input control M0 changes from 0→1, it first reset the timer T20 to 0. If M2=1, it will load the R101 (lower limit) value into the R103, and it will increase the output with fixed value (R102-R101 / R100) for every 0.01 second and stores it to register R103. When the T2 timer going up to the preset value R100, the output value equals to R102, and the output M102 will set to 1. If M2=0, will load the R102 (upper limit) value into the R103, and it will decrease the output amount with fixed ratio (R102-R101 / R100) for every 0.01 second and store it to register R103. The T2 timer going up to the preset value R100, the output value equals to R102, and the output amount with fixed ratio (R102-R101 / R100) for every 0.01 second and store it to register R103. The T2 timer going up to the preset value R100, the output value equals to R102, and the output M101 will set to 1.
- M1=1, pause the ramping action.
- The value of R102 must be greater than R101, otherwise the ramp action will not be performed, and the output M100 will set to 1.



Slow Up/Slow Down Instruction

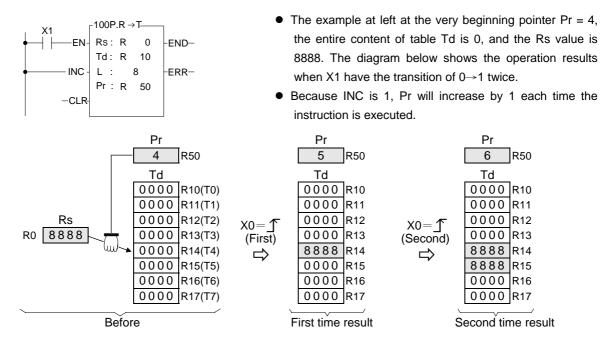


- be clamped by the maximum value.
- It can have smooth activity for acceleration and deceleration control via the execution of this instruction by using current output value (Rc) for analog output (R39044~R3967).
- The setting value of target output (Rt) needs to stay two scan times at least for proper operation.
- It needs 4 registers for working, they can not be repeated in use .
- This instruction is for positive value operation, but it also can have negative output by short and easy application program for help. Please see example 2.

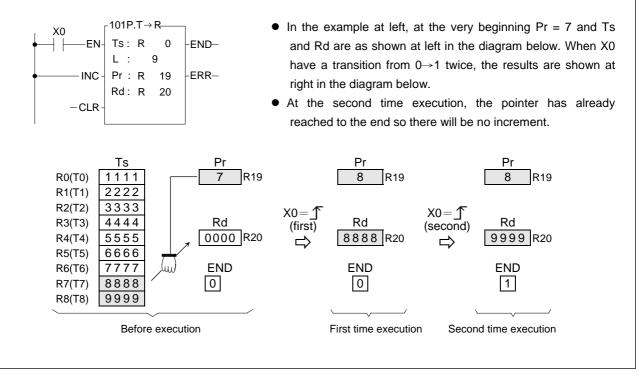


Slow Up/Slow Down Instruction

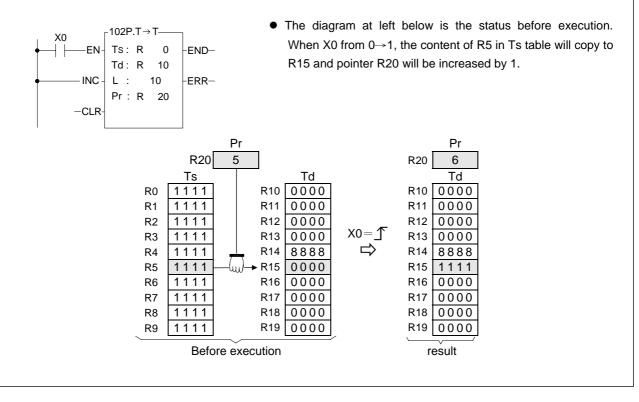
Fun No.	Mnemonic	Functionality	Fun No.	Mnemonic	Functionality
100	R→T	Register to table data move	107	T_FIL	Table fill
101	T→R	Table to register data move	108	T_SHF	Table shift
102	T→T	Table to table data move	109	T_ROT	Table rotate
103	BT_M	Block table move	110	QUEUE	Queue
104	T_SWP	Block table swap	111	STACK	Stack
105	R-T_S	Register to table search	112	BKCMP	Block compare
106	T-T_C	Table to table compare	113	SORT	Data Sort


- A table consists of 2 or more consecutive registers (16 or 32 bits). The number of registers that comprise the table is called the table length (L). The operation object of the table instructions always takes the register as unit (i.e. 16 or 32 bit data).
- The operation of table instructions are used mostly for data processing such as move, copy, compare, search etc, between tables and registers, or between tables. These instructions are convenient for application.
- Among the table instructions, most instructions use a pointer to specify which register within a table will be the target of operation. The pointer for both 16 and 32-bit table instructions will always be a 16-bit register. The effective range of the pointer is 0 to L-1, which corresponds to registers T₀ to T_{L-1} (a total of L registers). The table shown below is a schematic diagram for 16-bit and 32-bit tables.
- Among the table operations, shift left/right, rotate left/right operations include a movement direction. The direction toward the higher register is called left, while the direction toward the lower register is called right, as shown in the diagram below.

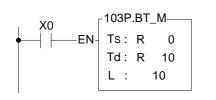
FUN100 D P FUN100 D P **REGISTER TO TABLE MOVE** R→T R→T Rs : Source data , can be constant or register Ladder symbol 100DP.R \rightarrow T-Td : Source register for destination table Rs: Move control-EN -END- Move to end L : Length of destination table Td : Pr : Pointer register Pointer increment-INC L : -ERR- Pointer error Pr : Rs, Td can associate with V, Z, P0~P9 index Pointer clear-CLR register as indirect addressing Range WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR


	rungo														
		WX0	WY0	WM0	WS0	Т0	C0	R0	R3840	R3904	R3968	R5000	D0	16/32bit	V 、 Z
Ope														+/-	
rand	1	WX240	WY240	WM1896	WS984	T255	C255	R3839	R3903	R3967	R4167	R8071	D4095	number	P0~P9
	Rs	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc
	Td		\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc		\bigcirc	O*	O*	\bigcirc		\bigcirc
	L							\bigcirc				*	\bigcirc	2~2048	
	Pr		\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	O*	O*	\bigcirc		

- When move control "EN" = 1 or transition from 0 to 1(instruction), the contents of the source register Rs will be written onto the register Tdpr indicated by the pointer Pr within the destination table Td (length is L). Before executing, this instruction will first check the pointer clear "CLR" input signal. If "CLR" is 1, it will first clear the pointer Pr, and then carry out the move operation. After the move has been completed, it will then check the Pr value. If the Pr value has already reached L-1 (point to the last register in the table) then it will only set the move-to-end flag "END" to 1, and finish execution of this instruction. If the Pr value is less than L-1, then it must again check the pointer increment "INC" input signal. If "INC" is 1, then Pr value will be also increased. Besides, pointer clear "CLR" is able to operate independently, without being influenced by other input.
- The effective range of the pointer is 0 to L-1. Beyond this range, the pointer error "ERR" will be set to 1, and this instruction will not be performed.


FUN101 D P T→R				TA	BLE	TO R	EGIS	TER N	IOVE				F	FUN101 T→R
Move contr Pointer incremen Pointer clea	nt-INC	- 101D - Ts : L : - Pr : Rd :				love to			L : L Pr : P Rd : D Ts, Ro	ength c ointer i estinat I may c	of source egister ion reg combine	ce table ister e with '	register e V, Z, P0 lication	~P9 to
Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К	XR
	WX0	WY0	WM0	WS0	Т0	C0	R0	R3840	R3904	R3968	R5000	D0	16/32bit	V · Z
					T255	C255	R3839	R3903	R3967	 R4167	 R8071	 D4095	+/- number	P0~P9
Ope- rand	WX240	WY240	WM1896	WS984	1255	0200								
• •	WX240	WY240	WM1896	WS984	0	0200	0	0	0	\bigcirc	\bigcirc	\bigcirc		0
rand	WX240	WY240	WM1896	WS984	~	~	0	0	0	0	○ *	0		0
rand	WX240	WY240	WM1896	WS984 〇	~	~	0	0	0	0 (*	0 0* 0*	000	2~2048	0

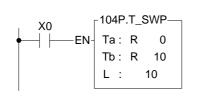
- When move control "EN" = 1 or transition from 0 to 1 (instruction), the value of the register Tspr specified by pointer Pr within source table Ts (length is L) will be written into the destination register Rd. Before executing, this instruction will first check the input signal of pointer clear "CLR". If "CLR" is 1, it will first clear Pr and then carry out the move operation. After completing the move operation, it will then check the value of Pr. If the Pr value has already reached L-1 (point to the last register in the table), then it sets the move-to-end flag to 1, and finishes executing of this instruction. If Pr is less than L-1, it check the status of "INC". If "INC" is 1, then it will increase Pr and finish the execution of this instruction. Besides, pointer clear "CLR" can execute independently and is not influenced by other inputs.
- The effective range of the pointer is 0 to L-1. Beyond this range the pointer error "ERR" will be set to 1 and this instruction will not be carried out.


	02 D P →T				TA	ABLE '	το τ	ABLE	Move	Ξ				F	UN10 T–	2 D P ∍T
	Move cont ter increme Pointer cle	ent-INC	- 102D - Ts : Td : C- L : Pr :		-EN[)— Mov R— Poir			To L Pi Ts	d : Star reg : Tab : Poir s, Td i	ting nu jister le (Ts nter reg may c	umber and To gister ombino	of dest d) lengt	tination th V, Z,	ble regi n table P0~P	
	Range	e WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К	XR	
Ope- WX0 WY0 WM0 WS0 T0 C0 R0 R3840 R3904 R3968 R5000 D0									2 2048	V \ Z P0~P9						
	Ts									\bigcirc		0				
	Td									\bigcirc	0*	0*	\bigcirc		\bigcirc	
	L							0				0*	\bigcirc	\bigcirc		
	Pr		0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	*	O*	\bigcirc			

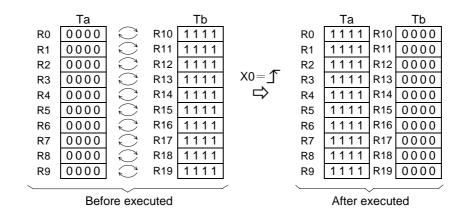
- When move control "EN" = 1 or have a transition from 0 to 1(instruction), the register Tspr pointed by pointer Pr within the source table will be moved to a register Tdpr, which also pointed by the pointer Pr in the destination table. Before execution, it will first check the input signal of pointer clear "CLR". If "CLR" is 1, it will first clear Pr to 0 and then do the move (in this case Ts0→Td0). After the move action has been completed it will then check the value of pointer Pr. If the Pr value has already reached L-1 (point to the last register on the table), then it will set the move-to-end flag "END" to 1 and finish executing of this instruction. If the Pr value is less than L-1, it will check the status of "INC". If "INC" is 1, then the Pr value will be increased by 1 before execution. Besides, pointer clear "CLR" can execute independently, and will not be influenced by other input.
- The effective range of the pointer is 0 to L-1. Beyond this range, the pointer error flag "ERR" will be set to 1, and this instruction will not be carried out.

FUN103 D BT_M	P				В	LOC	K TA	BLE N	IOVE						FUN103 BT_M
				<u>symbo</u> BT_M -			Ts	:Start	ing reg	ister fo	or sour	ce tabl	e		
Move con	trol — E	ΞN - Τ	s				Td	I : Star	ting req	gister f	or dest	ination	table		
		Т	d:				L:	Length	ns of so	ource a	ind des	stinatio	n table	s	
		l	- :				Ts	, Td m	ay con	nbine v	vith V,	Z, P0~	P9 to s	serve	indirect
	Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
Ope)- -	WX0	WY0 	WM0 WM1896	WS084	T0 T255	C0 C255	R0 		R3904			D0 D4095	2 256	V \ Z P0~P9
Tan	Ts	0	0	00101090	0	0	0255	0	0	0	0		04095	230	0
	Td		Õ	Õ	0	0	Õ	Õ		Õ	O *	Ŭ*	Õ		0
												\bigcirc			

- In this instruction the source table and destination table are the same length. When this instruction was executed all the data in the Ts table is completely copied to Td. No pointer is involved in this instruction.
- When move control "EN" = 1 or have a transition from 0 to 1 (instruction), all the data from source table Ts (length L) is copied to the destination table Td, which is the same length.
- One table is completely copied every time this instruction is executed, so if the table length is long, it will be very time consuming. In practice, P modifier should be used to avoid time waste caused by each scan repeating the same movement action.

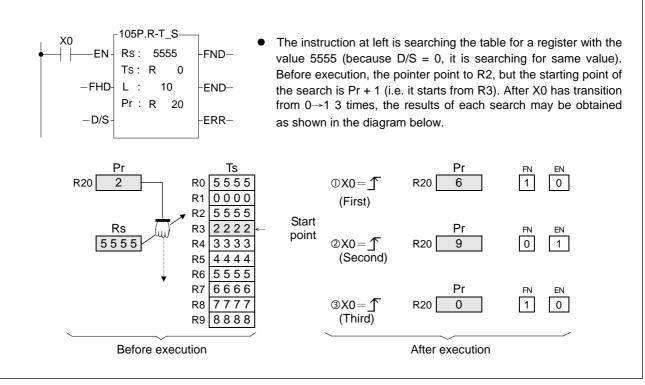


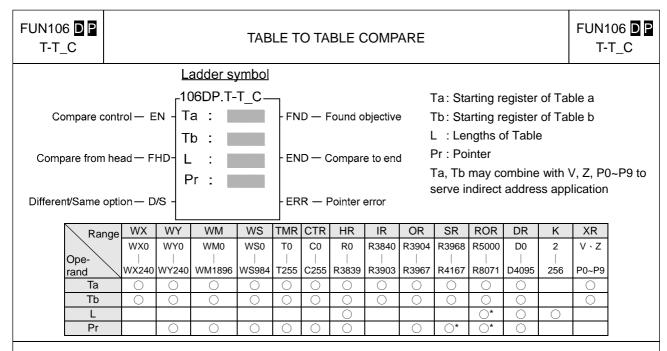
 The diagram at left below is the status before execution. When X0 from 0→1, the content of R0~R9 in Ts table will copy to R10~R19.

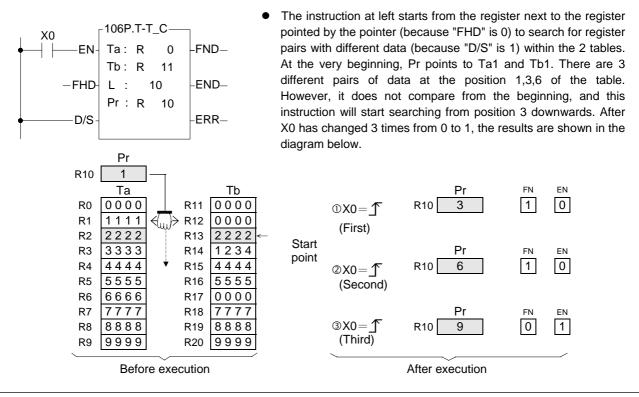

R0 R1 R2	Ts 0000 1111 2222	$ R10 \\ R11 \\ R12 $	Td 0000 0000 0000		R10 R11 R12	Td 0000 1111 2222
R3	3333	\longrightarrow R13	0000	X0=Ţ	R13	3333
R4	4444	──→ R14	0000	\Rightarrow	R14	4444
R5	5555	──→ R15	0000		R15	5555
R6	6666	──→ R16	0000		R16	6666
R7	7777	──→ R17	0000		R17	7777
R8	8888	──→ R18	0000		R18	8888
R9	9999	──→ R19	0000		R19	9999
<u> </u>				/	\	
	Befo	ore executed				ecute esult

FUN104 D T_SWP	Ρ				BLO	СК ТА	BLE S	SWAP					F	UN104 D P T_SWP
		Lad	der sym	bol										
		_104E	P.T S	NP-				Ta : S	Starting	registe	er of Ta	ble a		
Move cont	rol — EN	-Ta:						Tb : 5	Starting	registe	er of Ta	ble b		
								L :L	engths	of Tab	ole a ar	nd b		
		Tb :						Ts, Td	l may c	ombine	e with \	/, Z, P()~P9 t	o serve
		L :						indired	t addre	ess app	olication	۱		
	Range	WY	WM	WS	TMR	CTR	HR	OR	SR	ROR	DR	K	XR	
	_ \	WY0	WM0	WS0	T0	C0	R0	R3904	R3968	R5000	D0	2	V · Z	
	Ope- rand	WY240	WM1896	WS984	T255	C255	R3839	R3967	R4167	R8071	D4095	256	P0~P9	,
	Та										0			
	Tb	0	0	\bigcirc	0	\bigcirc	\bigcirc	0	0*	0*	\bigcirc		\bigcirc	
	L						\bigcirc			O*	\bigcirc	\bigcirc		

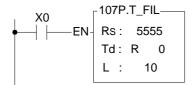
- This instruction swaps the contents of Tables a and b, so the table must be the same length, and the registers in the table must of write able. Since a complete swap is done with each time the instruction is executed, no pointer is needed.
- When move control "EN" = 1 or have a transition from 0 to 1 (P instruction), the contents of Table a and Table b will be completely swapped.
- This instruction will swap all the registers specified in L each time the instruction is executed, so if the table length is big, it will be very time consuming, therefore P instruction should be used.



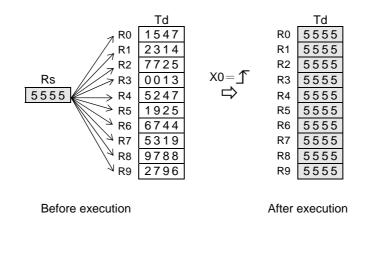

 The diagram at left below is the status before execution. When X0 from 0→1, the contents of R0~R9 in Ts table will swap with R10~R19.


FUN105 D P R-T_S				RE	GIST	ER T	Ο ΤΑΕ	BLE SI	EARC	Н				FUN10 R-T_	
Search cor Search from h Different/same op	ead — F	-10 ≡N - R T HD - L F	adder s D5DP.R- Rs: s: s: Pr:	•	- FN - EN	ID — \$	Found c Search Pointer	to end	e	or Ts:St se L:La Pr:Po Rs,Ts	a regi tarting earche abel lei ointer o may c	ster registe d ngth of table ombine	, It can be er of table e with V, J ss applic	being Z, P0~P§	
Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR	
Ope- rand	WX0	WY0 WY240	WM0 WM1896	WS0 WS984	T0 T255	C0 C255	R0 R3839	R3840 R3903	R3904 R3967	R3968 R4167		D0 D4095	16/32-bit +/- number	V ∖ Z P0~P9	
Rs	0	\bigcirc	0	0	0	\bigcirc	0	0	0	0	0	0	0	0	
Ts	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	0	0	0	0	0	0		0	
L							0				0*	0	2~256		
Pr		\bigcirc	Ö	0	Ó	0	0		0	0*	0*	0			

- When search control "EN" = 1 or has a transition from 0 to 1 (instruction), will search from the first register of Table Ts (when "FHD" = 1 or Pr value has reached L-1), or from the next register (Tspr + 1) pointed by the pointer within the table ("FHD" = 0, while Pr value is less than L-1) to find the first data different with Rs(when D/S = 1) or find the first data the same with Rs (when D/S = 0). If it find a data match the condition it will immediately stop the search action, and the pointer Pr will point to that data and found objective flag "FND" will set to 1. When the searching has searched to the last register of the table, the execution of the instruction will stop, whether it was found or not. In that case the search-to-end flag "END" will be set to 1 and the Pr value will stop at L-1. When this instruction next time is executed, Pr will automatically return to the head of the table (Pr = 0) before the search begin.
- The effective range of Pr is 0 to L-1. If the value exceeds this range then the pointer error flag "ERR" will change to 1, and this instruction will not be carried out.



• When comparison control "EN" = 1 or has a transition from 0 to 1(instruction), then starting from the first register in the tables Ta and Tb (when "FHD" = 1 or Pr value has reached L-1) or starting from the next pair of registers (Tapr+1 and Tbpr+1) pointed by Pr ("FHD" = 0, while Pr is less than L-1), this instruction will search for pairs of registers with different values (when "D/S" = 1) or the same value (when "D/S" = 0). When search found (either different or the same), it will immediately stop the search and the pointer Pr will point to the register pairs met the search criteria. The found flag "FND" will be set to 1. When it has searched to the last register of the table, the instruction will stop executing. whether it found or not. The compare-to-end flag "END" will be set to 1, and the pointer value will stop at L-1. When this instruction is executed next time, Pr will automatically return to the head of the table to begin the search. The effective range of Pr is 0 to L-1. The Pr value should not changed by other programs during the operation. As this will affect the result of the search. If the Pr value not in the effective range, the pointer error flag "ERR" will be set to 1, and this instruction will not be carried out.



FUN107 D P T_FIL						TABL	e fili	_					F	UN107 T_FI	
Fill control — E	-10 N - Rs	Ladder symbol Rs : Source data to fill, can be a constan -107DP.T_FIL Td : Starting register of destination table Rs : Image: Constant of the starting register of destination table Rs : Image: Constant of the starting register of destination table L : Td : Td : Image: Constant of the starting register of destination table L : Td : L : Constant of the starting register of destination table L : Constant of the starting register of destination table L : Constant of the starting register of destination table L : Constant of the starting register of destination table L : Constant of the starting register of destination table L : Constant of the starting register of destination table L : Constant of the starting register of destination table L : Constant of the starting register of destination table L : Constant of the starting register of destination table C : Constant of the starting register of destination table C : Constant of the starting register of destination table C : Constant of the starting register of destination table C : Constant of the starting													rect
Range Ope- rand	WX0 WX240	WY WY0 WY240	~	WS WS0 - WS984	TMR T0 T255	CTR C0 C255	~	 R3903		SR R3968 R4167		 D4095	K 16/32-bit +/- number	XR V · Z P0~P9	
Ts Td L	0	0	0	0	0	0	0	0	0	 *	0 0* 0*	0	 2~256	0	

- When fill control "EN" = 1 or has a transition from 0 to 1 (P instruction), the Rs data will be filled into all the registers of the table Td.
- This instruction is mainly used for clearing the table (fill 0) or unifying the table (filling in the same values). It should be used with the P instruction.

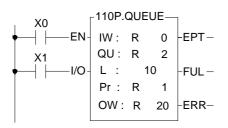
• The instruction at left will fill 5555 into the whole table Td. The results are as shown in the diagram below.

Ladder symbol Shift control = EN IW : Data to fill the room after shift operation, can be a constant or a register Shift control = EN IW : i i i i i i i i i i i i i i i i i i	$\frac{108DP.T_SF}{Td} = \frac{108DP.T_SF}{Td} = 10$						-	TABLI	E SHII	FT						FUN108 T_SHI
• When shift control "EN" = 1 or has a transition from 0 to 1() instruction), all the data from table Ts will be taken out and shifted one position to the left (when "L/R" = 1) or to the right (when "L/R" = 0). The room created by the shift operation will be filled by IW and the results will be written into table Td. The data shifted out will be written into W. • When shift control "EN" = 1 or has a transition from 0 to 1() instruction), all the data from table Ts will be taken out and shifted one position to the left (when "L/R" = 1) or to the right (when "L/R" = 0). The room created by the shift operation will be filled by IW and the results will be written into table Td. The data shifted out will be written into W. • In the program at left. Ts and Td is the same table. Therefore, the table shifts itself and then writes back to itself (the table must be writ able). It first perform a shift left operation (let X1 = 1, and X0 go from 0 ->1) then perform a shift left operation (let X1 = 1, and X0 go from 0->1) then perform a shift left operation (let X1 = 1, and X0 go from 0->1). The result are shown at right in the diagram below. Ts(Td) Ts(Td) Ts(T) Rt(Ts) Ts(T) Rt(Ts) Ts(T) Rt(Ts) Ts(T) Rt(Ts)	• When shift control "EN" = 1 or has a transition from 0 to 1(\square instruction), all the data from table Ts will be taken out and shifted one position to the left (when "L/R" = 1) or to the right (when "L/R" = 0). The room created by the shift operation will be filled by IW and the results will be written into table Td. The data shifted out will be written into table Td. The data shifted out will be written into table Td. The data shifted out will be written into table Td. The data shifted out will be written into table Td. The data shifted out will be written into GW. • In the program at left, Ts and Td is the same table. Therefore, the table shifts itself and then writes back to itself (the table must be writ table). It first perform a shift left operation (let X 1 = 1, and X0 go from 0 \rightarrow 1). The result are shown at right in the diagram below. • In the group operation (let X 1 = 0, and makes X0 go from 0 \rightarrow 1). The result are shown at right in the diagram below.			-108 - IW Ts - Td L	DP.T_S :				Ts: Td: L: OW: Ts, T	consta Sourc Destin Lengtł Regist d may	nt or a e table nation t ns of ta ter to a combi	regist able s ables 1 accept ne with	er toring s s and the shi	shift re Td ifted ou	sults ut data	
• When shift control "EN" = 1 or has a transition from 0 to 1(\bigcirc instruction), all the data from table Ts will be taken out and shifted one position to the left (when "L/R" = 1) or to the right (when "L/R" = 0). The room created by the shift operation will be filled by IW and the results will be written into table Td. The data shifted out will be written into able Td. The data shifted out will be written into able Td. The data shifted out will be written into able Td. The data shifted out will be written into able Td. The data shifted out will be written into able Td. The data shifted out will be written into able Td. The data shifted out will be written into able Td. The data shifted out will be written into able Td. The data shifted out will be written into able Td. The data shifted out will be written into able Td. The data shifted out will be written into able Td. The data shift do operation (let X1 = 1, and X0 go from 0 \rightarrow 1). The result are shown at right in the diagram below. Tg(Td) $transform 0 = Tg(Td)$ t	• When shift control "EN" = 1 or has a transition from 0 to 1(\bigcirc instruction), all the data from table Ts will be taken out and shifted one position to the left (when "LR" = 1) or to the right (when "LR" = 0). The room created by the shift operation will be filled by IW and the results will be written into table Td. The data shifted out will be written into table Td. The data shifted out will be written into table Td. The data shifted out will be written into table Td. The data shifted out will be written into table Td. The data shifted out will be written into table Td. The data shifted out will be written into table Td. The data shifted out will be written into table Td. The data shifted out will be written into table Td. The data shifted out will be written into table Td. The data shifted out will be written into table Td. The data shifted out will be written into table Td. The data shifted out will be written into table Td. The data shifted out will be written into table Td. The data shifted out will be table. Therefore, the table shifts itself and then writes back to itself (the table must be writ able). It first perform a shift to right operation (let X1 = 1, and X0 go from 0 \rightarrow 1). The result are shown at right in the diagram below.				10/11/1	W/S	TMD	СТР					POP	ΠΡ	K	VP
$\frac{W}{Is} \bigcirc O \bigcirc $	IW 0	Ope-	WX0	WY0	WMO	WS0	T0	C 0	R0	R3840	R3904	R3968	R5000	D0	16/32-bit +/-	^E V ∖ Z
• When shift control "EN" = 1 or has a transition from 0 to 1() instruction), all the data from table Ts will be taken out and shifted one position to the left (when "L/R" = 0). The room created by the shift operation will be filled by IW and the results will be written into table Td. The data shifted out will be written into OW. • In the program at left, Ts and Td is the same table. Therefore, the table shifts itself and then writes back to itself (the table must be written able). It first perform a shift to right operation (let X1 = 0, and makes X0 go from 0 \rightarrow 1). The result are shown at right in the diagram below. • In the frequencies of the data form table in the diagram below. • In the program at left, Ts and Td is the same table. Therefore, the table shifts itself and then writes back to itself (the table must be written able). It first perform a shift to right operation (let X1 = 0, and makes X0 go from 0 \rightarrow 1). The result are shown at right in the diagram below. • Ts(Td) (Shift left) (Shift right) Ts(Td) (Shift left) (Shift right) rd(Ts) rd(Ts) rd(Ts) rd(Ts) rd(Ts) R10 1234 R4 4444 R5 5555 R6 6666 R7 77777 R8 8888 R8 99999 (Shift left) R9 8888 R9 1234	• When shift control "EN" = 1 or has a transition from 0 to 1(is instruction), all the data from table Ts will be taken out and shifted one position to the left (when "L/R" = 1) or to the right (when "L/R" = 0). The room created by the shift operation will be filled by IW and the results will be written into table Td. The data shifted out will be written into OW. • In the program at left, Ts and Td is the same table. Therefore, the table shifts itself and then writes back to itself (the table must be writ able). It first perform a shift left of Td : R 0 L : 10 OW : R 11 • In the program at left, Ts and Td is the same table. Therefore, the table shifts itself and then writes back to itself (the table must be writ able). It first perform a shift left or ight operation (let X1 = 1, and X0 go from 0 \rightarrow 1) then perform a shift left or ight operation (let X1 = 0, and makes X0 go from 0 \rightarrow 1). The result are shown at right in the diagram below. • Ts(Td) • Ts(Td) • R11 •	IW		~	· ·	_	· ·	<u> </u>	<u> </u>	-	~	<u> </u>	<u> </u>	<u> </u>	0	
• When shift control "EN" = 1 or has a transition from 0 to 1() instruction), all the data from table Ts will be taken out and shifted one position to the left (when "L/R" = 1) or to the right (when "L/R" = 0). The room created by the shift operation will be filled by IW and the results will be written into table Td. The data shifted out will be written into OW. • In the program at left, Ts and Td is the same table. Therefore, the table shifts itself and then writes back to itself (the table must be writ able). It first perform a shift left operation (let X1 = 1, and X0 go from 0 \rightarrow 1) then perform a shift to right operation (let X1 = 1, and X0 go from 0 \rightarrow 1) then perform a shift to right operation (let X1 = 0, and makes X0 go from 0 \rightarrow 1). The result are shown at right in the diagram below. Ta(Ts) Ta(Ts) Ta	• When shift control "EN" = 1 or has a transition from 0 to 1(\blacksquare instruction), all the data from table Ts will be taken out and shifted one position to the left (when "L/R" = 1) or to the right (when "L/R" = 0). The room created by the shift operation will be filled by IW and the results will be written into table Td. The data shifted out will be written into OW. • In the program at left, Ts and Td is the same table. Therefore, the table shifts itself and then writes back to itself (the table must be writ able). It first perform a shift left operation (let X1 = 1, and X0 go from 0 \rightarrow 1) then perform a shift to right operation (let X1 = 0, and makes X0 go from 0 \rightarrow 1). The result are shown at right in the diagram below. • (Shift left) (Shift l		0		-	-		0	-	0	-)	<u> </u>	-		
• When shift control "EN" = 1 or has a transition from 0 to 1(\square instruction), all the data from table Ts will be taken out and shifted one position to the left (when "L/R" = 1) or to the right (when "L/R" = 0). The room created by the shift operation will be filled by IW and the results will be written into table Td. The data shifted out will be written into OW. • In the program at left, Ts and Td is the same table. Therefore, the table shifts itself and then writes back to itself (the table must be writ able). It first perform a shift left operation (let X1 = 1, and X0 go from 0 \rightarrow 1) then perform a shift to right operation (let X1 = 0, and makes X0 go from 0 \rightarrow 1). The result are shown at right in the diagram below. • Ts(Td) • T	• When shift control "EN" = 1 or has a transition from 0 to 1(instruction), all the data from table Ts will be taken out and shifted one position to the left (when "L/R" = 1) or to the right (when "L/R" = 0). The room created by the shift operation will be filled by IW and the results will be written into table Td. The data shifted out will be written into OW. • In the program at left, Ts and Td is the same table. Therefore, the table shifts itself and then writes back to itself (the table must be writ able). It first perform a shift left operation (let X1 = 1, and X0 go from 0 \rightarrow 1). The result are shown at right in the diagram below. • In the result are shown at right in the diagram below. • In the result are shown at right in the diagram below.					0			<u> </u>)		· ·	-	2~256	
out and shifted one position to the left (when "L/R" = 1) or to the right (when "L/R" = 0). The room created by the shift operation will be filled by IW and the results will be written into table Td. The data shifted out will be written into OW. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	out and shifted one position to the left (when "L/R" = 1) or to the right (when "L/R" = 0). The room created by the shift operation will be filled by IW and the results will be written into table Td. The data shifted out will be written into OW. $ \begin{array}{c} X_{0} \\ X_{1} \\ X_{2} \\ X_{1} \\ X_{1} \\ X_{2} \\ X_{2} \\ X_{2} \\ X_{1} \\ X_{2} \\ X_{2} \\ X_{1} \\ X_{2} \\ X_{2} \\ X_{2} \\ X_{2} \\ X_{1} \\ X_{2} \\ X_{2} \\ X_{2} \\ X_{1} \\ X_{1} \\ X_{2} \\ $	OW		0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	○*	○*	\bigcirc		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	out and s the shift c	hifted one	e positio	on to the	e left (v	vhen "	'L/R" =	= 1) or	to the	right (when	"L/R" =	= 0). TI	he room	created b
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	out and s the shift c written int	hifted one operation o OW.)) EN-	e positio will be 108P.T IW : TS : Td : L :	F_SHF R 10 R 0 R 0 R 0 10	e left (v r IW an	vhen "	'L/R" = result: • Ir T it: o si	= 1) or s will b herefoi self (th peratio hift to r	to the e writte progra re, the e table n (let)	right (en into m at table must X1 = 1 peratio	when ' table left, T shifts be wri , and 2 n (let 2	"L/R" = Td. Tf s and s itself it able) X0 go f X1 = 0	e 0). The data the data d Td i and t and t from 0 , and r	he room a shifted is the s hen wri t perfore \rightarrow 1) the makes X	a created b d out will b same tabl ites back m a shift le en perform (0 go from
OW OW	R7 7777 R7 6666 R7 7777 R8 8888 R8 7777 R8 8888	out and s the shift c written int	hifted one operation o OW.)) EN-	e positio will be 108P.T IW : TS : Td : L :	n to the filled by R 10 R 0 R 0 10 R 11	e left (v IW an	vhen "	'L/R" = result: • Ir T it: o si	= 1) or s will b herefoi self (th peratio hift to r	to the e writte progra re, the e table n (let)	right (en into m at table must X1 = 1 peratio	when to table left, To shifts be write and to shown (Shift	"L/R" = Td. Tl s and itself it able) X0 go f X1 = 0 at righ	= 0). The data d Td i and t . It firs from 0 , and r t in the	he room a shifted is the s hen wri t perfor \rightarrow 1) the makes λ e diagram hift right)	a created b d out will b same tabl ites back m a shift le en perform (0 go from m below.

①First time

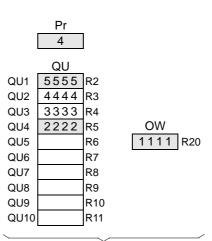
Before execution

②Second time


FUN109 D P T_ROT		TAI	BLE ROTA	ΤE					FUN109 D T_ROT
Rotate cont Left/Right directi	Ladder symbol Ts : Source table for rotate Td : Destination table storing results of rotate Td : Lengths of table Td : L : Lengths of table L : Lengths application								
Ra Ope- rand Ts Td L	nge WX WY WM WX0 WY0 WM0 WX240 WY240 WM1896 0 0 0 0 0	WS0 T0	CTR HR C0 R0 C255 R3839 O O O O O O	R3840 F		68 R5000 67 R8071		K 2 256	XR V \ Z P0~P9
rotation w	X0 → X1 → X1 → ×1 ↓ L/R - L : X1 ↓ L/R - L : X1		table a one let then p	fter rota t rotatio erforms	ntion will on (let X ⁻ one righ	write bao I = 1, ar nt rotation	ck to it nd X0 g n (let 2	self. I go fro <1 = (ne table. The t first perform m 0→1), and 0, and X0 go n the diagram
	Rotate left Ts(Td) R0 0000 R1 1111 R2 2222 R3 3333 R4 4444	(right)		(Rotate Td(R0 99 R1 00 R2 1 1	Ts) 9 9	R0 R1	e right) <u>Td(Ts)</u> 0000(1111 22222)) 	

	0 D P UE						QL	JEUE							FUN110 QUEU
			Ladde	r symbo	ol					IW :	Data p	oushed	l into d	queue, ca	n be a cons
				.QUEU							or a r	egister	r		
vecutio	n control —		IW :	.QOLO		рт — С	المالم	empty		QU :	Startin	ig regi	ster of	queue	
Acculio	in control						kuçuç	empty		L :	Size o	f queu	e		
			QU :							Pr :	Pointe	r regis	ster		
In/Oi	ut control —		L : Pr :		F FU	JL — C	Jueue						epting	y data pop	ped out
			ow:				Pointer	orror				queue			0.45.55.5
			0.00				oniei	enu			-	nbine ress a			9 to serve
Г	<u></u>			10/04						OR					VD
	Range	WX WX0	WY WY0	WM WM0	WS WS0	TMR T0	CTR C0	HR R0	IR R3840		SR 83968	ROR R5000		K	XR V · Z
C	Ope-													16/32-bit +/- number	
	rand			WM1896								R8071			P0~P9
-	IW QU	0	0	0	0	0	0	0	0	0	0	○ ○*	0	0	\sim
-	L		0	0	0	0	0	0		0	0	0*	0	2~256	0
	– Pr		0	0	0	0	0	0		0	O *	O*	0		
	OW		Ō	0	Ō	Ō	Ō	Ō		Ō	O *	O *	Ō		
300		that th		ue is em		J₁~QU	l∟ resp	-			-	-		-	o from 1 to and Pr = 0
 Que out 	eue is a fi	rst in fi queue.	ne queu irst out . A que	ue is em (FIFO) eue is co	pty. device, mprise	i.e	the d	bective ata th	ely cor at first	respo t push	nd to ped into	pointer	rs Pr = qu <u>e</u> ue	= 1 to L, a	
 Que out 	eue is a fi	rst in fi queue.	ne queu irst out . A que	ue is em (FIFO) eue is co	pty. device, mprise	i.e	the d	bective ata th	ely cor at first	respo t push	nd to ped into	pointer	rs Pr = qu <u>e</u> ue	= 1 to L, a	and Pr = 0 e first to po
 Que out 	eue is a fi	rst in fi queue.	irst out A que in the c	ue is em (FIFO) eue is co diagram	pty. device, mprise below:	i.e d of L QU1 QU2	the d	ective ata th ecutive <u>Pr</u> 4 <u>QU</u> 4 3 P	ely cor at first	respo t push	nd to ped into	pointer	rs Pr = qu <u>e</u> ue	= 1 to L, a	and Pr = 0 e first to po
 Que out 	eue is a fi : from the : QU regist	rst in fi queue. er, as	re quer rst out A que in the c push alway	(FIFO) eue is co diagram	pty. device, mprise below:	i.e d of L QU1 QU2 QU3	the d cons	Pr 4 QU 2 d	at first e 16 c	t push	ed into	o the constant	rs Pr =	= 1 to L, a	and Pr = 0 e first to po starting fro
 Que out 	eue is a fi : from the : QU regist	rst in fi queue. er, as	re quer rst out A que in the c push v alway	(FIFO) eue is co diagram	pty. device, mprise below:	i.e d of L QU1 QU2 QU3 QU4	the d cons 4444 3333 2222	Pr 4 QU 2 d	at first e 16 c	t push	ed into	pointer	rs Pr =	= 1 to L, a will be th struction)	and Pr = 0 e first to po starting fro

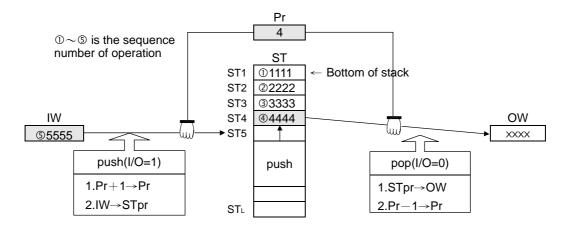
● When execution control "EN" = 1 or has a transition from 0 to 1 (instruction), the status of in/out control "I/O" determines whether the IW data will be pushed into the queue (when "I/O" = 1) or be popped out and transferred to OW (when "I/O" = 0). As shown in the diagram above, the IW data will always be pushed into the first (QU1) register of the queue. After it has been pushed in, Pr will immediately be increased by 1, so that the pointer can always point to the first data that was pushed into the queue. When it is popped out, the data pointed by Pr will be transferred directly to OW. Pr will be reduced by 1, so that it still point to the first data remained in the queue.


FUN110 D P QUEUE	QUEUE	FUN110 D P QUEUE
---------------------	-------	---------------------

If no data has yet been pushed into the queue or the pushed in data has already been popped out (Pr = 0), then the queue empty flag will be set to 1. In this case, even if there is further popping out action, this instruction will not be executed. If data is only pushed in and not popped out, or pushed in is more than that popped out, then the queue finally becomes full (pointer Pr indicates the QU_L position), and the queue full flag is changed to 1. In this case, if there is more pushing in action, this instruction will not execute. The pointer for this instruction is used during access of the queue, to indicate the data that was pushed in the earliest. Other programs should not be allowed to change it, or else an operation error will be created. If there is a specific application, which requires the setting of a Pr value, then its permissible range is 0 to L (0 means empty, and 1 to L respectively correspond to QU1 to QUL). Beyond this range, the pointer error flag "ERR" will be set as 1, and this instruction will not be carried out.

• The program at left assumes the queue content is the same with the queue at preceding page. It will first perform queue push operation, and then perform pop out action. The results are shown below. Under any circumstance, Pr always point to the first (oldest) data that was remained in queue.

	Pr	_	
	5		
	QU	_	
QU1	5555	R2	
QU2	4444	R3	
QU3	3333	R4	
QU4	2222	R5	WO
QU5	1111	R6	xxxx R20
QU6		R7	1
QU7		R8	OW unchanged
QU8		R9	
QU9		R10	
QU10		R11	



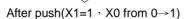
After push in (X1=1 \cdot X0 from 0 \rightarrow 1)

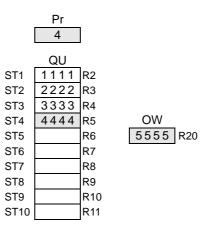
After pop off (X1=0 , X0 from $0 \rightarrow 1$)

FUN111 D P STACK		STACK									F	UN111 STACI		
Execution contro	ST : Pr : Pointer register								k a poppe	d out froi				
Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
Ope- rand	WX0	WY0 WY240	WM0 WM1896	WS0 WS984	T0 T255	C0 C255	R0 R3839	R3840 R3903				D0 D4095	16/32-bit +/- number	
IW	0	0	0	0	0	0	0	0	0	0	0	0	\bigcirc	
ST		0	0	0	0	0	0		0	0*	0*	0		\bigcirc
							0				0*	0	2~256	
L					\sim	\cap	\cap		\cap	*	*	\cap		
L Pr OW		0	0	\bigcirc	\bigcirc	\cup	\cup		\cup	\cup	\cup	\cup		

- Like queue, stack is also a kind of table. The nature of its pointer is exactly the same as with queue, i.e. Pr = 1 to L, which corresponds to ST₁ to ST_L, and when Pr = 0 the stack is empty.
- Stack is the opposite of queue, being a last in first out (LIFO) device. This means that the data that was most
 recently pushed into the stack will be the first to be popped out of the stack. The stack is comprised of L
 consecutive 16 or 32-bit (D instruction) registers starting from ST, as shown in the following diagram:

When execution control "EN" = 1 or has a transition from 0 to 1(instruction), the status of in/out control "I/O" determines whether the IW data will be pushed into the stack (when "I/O" = 1), or the data pointed by Pr within the stack (the data most recently pushed into the stack) will be moved out and transferred to OW (when "I/O" = 0). Note that the data pushed in is stacking, so before pushed in, Pr will increased by 1 to point to the top of the stack then the data will be pushed in. When it is popped out, the data pointed by pointer Pr (the most recently pushed in data) will be transferred to OW. After then Pr will decreased by 1. Under any circumstances, the pointer Pr will always point to the data that was pushed into the stack most recently.


FUN111 DP STACK	STACK	FUN111 D P STACK


• When no data has yet been pushed into the stack or the pushed in data has already been popped out (Pr = 0), the stack empty flag "EPT" will set to 1. In this case any further pop up actions, will be ignored. If more data is pushed than popped out, sooner or latter the stack will be full (pointer Pr points to ST_L position), and the stack full flag "FUL" will set to 1. In this case any further push actions, will be ignored. As with queue, the stack pointer in normal case should not be changed by other instructions. If there is a special application which requires to set the Pr value, then its effective range is 0 to L (0 means empty, 1 to L respectively correspond to ST₁ to ST_L). Beyond this range, the pointer error flag "ERR" will set to 1, and the instruction will not be carried out.

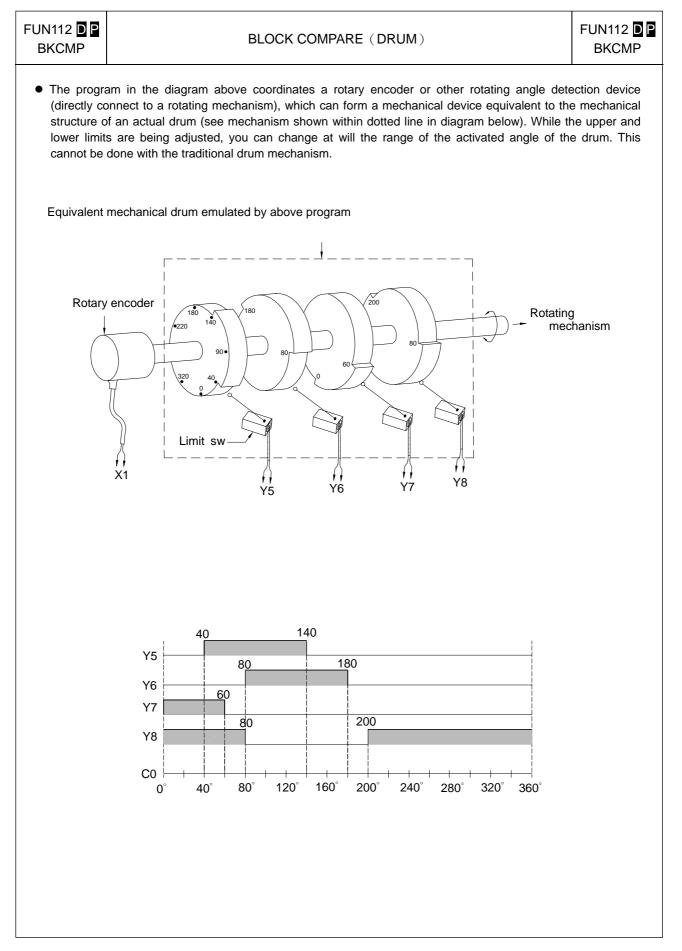
X0	-111P.	STA	ACK —]
•	IW :	R	0	-EPT-
X1	IW : ST :	R	2	
• I/O -	L :		10	-FUL -
	Pr:	R	1	
	OW :	R	20	-ERR-

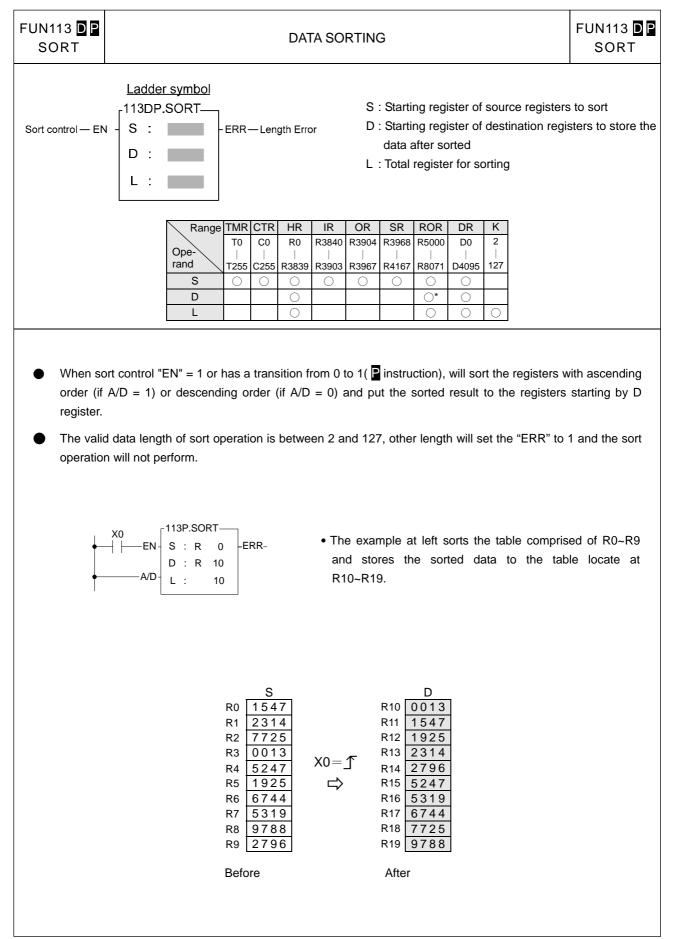
• The program at left assumes that the initial content of the stack is just as in the diagram of a stack on the preceding page. The operation illustrated in this example is to push a data and than pop it from stack. The results are shown below. Under any circumstances, Pr always point to the data that was most recently pushed into the stack.

	Pr 5	R1	
ST1 ST2 ST3 ST4	ST 1111 2222 3333 4444	R2 R3 R4 R5	OW
ST5	5555	R6	XXXX R20
ST6		R7	1
ST7		R8	OW unchanged
ST8		R9	
ST9		R10	
ST10		R11	

After pop up(X1=0 , X0 from $0 \rightarrow 1$)

FUN112 D BKCMP		BLOCK COMPARE (DRUM)											N112 D BKCMP			
Ladder symbol Rs										Data fo egiste		pare, c	can be	a cons	tant or a	
Comparison co	ontrol	— EN	- R T	ls : s :		- ERR	t—Limit	error			Startin ower li		ster blo	ock sto	ring up	per and
	L : Number of pairs of upper a							and lov	ver limits							
) <u>:</u>							Starting		' storin	g resu	lts of	
Range	Y	М	S	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К
	Y0	M0	S0	WX0	WY0	WM0	WS0	T 0	C0	R0	R3840	R3904	R3968	R5000	D0	16/32-bit +/-
Ope- rand	Y255	м999	5999	WX240	WY240	WM1896	WS984	T255	C255	R3839	R3903	R3967	R4167	R8071	D4095	number
Rs				0	0	\bigcirc	0	\bigcirc	\bigcirc	0	0	0	0	0	0	\bigcirc
Ts				0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	
L	_	~								0				0*	0	1~256
D	\bigcirc	\bigcirc	\bigcirc													

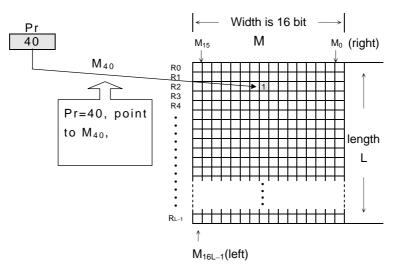

- When M1975=0, if there is any pair where the upper limit value is less than the lower limit value, then the limit error flag "ERR" will be set to 1, and the comparison output for that pair will be 0.
- When M1975=1, there is no restriction on the relation of upper limit and lower limit, this can apply for 360° rotary electronic drum switch application.


	Upper limit	Lower limit	Compare	Compared		Result
0	T _{S1}	T _{S0}	\longleftrightarrow	value	\longrightarrow	D ₀
1	T _{S3}	T _{S2}	\longleftrightarrow		\longrightarrow	D ₁
ζ	2	2	2	Rs	2	2
L–1	T _{S2L-1}	T _{S2L-2}	\longleftrightarrow		\longrightarrow	D_{L-1}

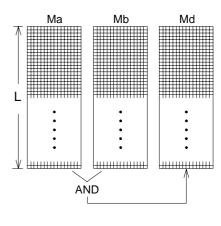
• Actually this instruction is a drum switch, which can be used in interrupt program and when incorporate with immediate I/O instruction (IMDIO) can achieve an accurate electronic drum.

X0 	112.BKCMP Rs: C 0 -ERR- Ts: R 10 L: 4
	D:Y 5
X1	
← PSU-	C 0
C0	PV: 360

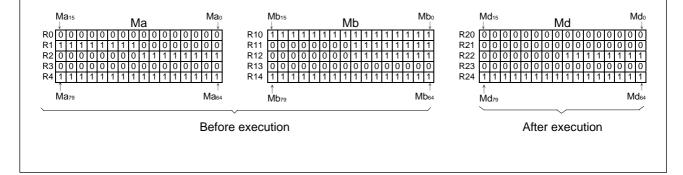
- In this program, C0 represents the rotation angle (Rs) of a drum shaft. The block compare instruction performs a comparison between Rs and the 4 pairs (L = 4) of upper and lower limits, R10,R11, R12,R13, R14,R15 and R16,R17. The comparison results can be obtained from the four drum output points Y5 to Y8.
- The input point X1 is a rotation angle detector mounted on the drum shaft. With each one degree rotation of the drum shaft angle, X1 produces a pulse. When the drum shaft rotates a full cycle, X1 produces 360 pulses.



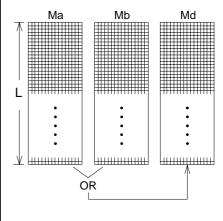
UN114 D P Z-WR						ZO	NE W	RITE							114 D -WR
Operation contr Write Selection			4P.Z-\ :	symbol WR ——	-ERR	х —	Ν	:Quan Nc	ng addi tity of b operanc ressing	eing s I can	et oe re combi	eset, 1- ne V	-511 、Z 、I	P0~P9	for ind
D	Y M Y0 M0 Y255 M191 O O	S S0 1 S99	WY WY0 WY240	WM WM0 WM1896	WS0	TMR T0 T255 〇	CTR C0 C255 〇	HR R0 R3839 O	IR R3840 R3903	OR R3904 R3967	SR R3968 R4167	0	DR D0 D4095 0	K	XR V · Z P0~P9
N		\bigcirc			0	\bigcirc	0	0		0	0	0	0	1-511	0
×0	N - D : D - N :	F		ERR–											
 Above exar X0 	N - D : D - N : nple, reg	F sters	R0 -	ERR–	ereset	to 0 v	while X	0=1.							
• Above exar	N = D : $D = N :$ $N = 0$	F 1 Sisters WR N	80 10 8 R0~R 15 7	ERR–											


Fun No.	Mnemonic	Functionality	Fun No.	Mnemonic	Functionality
120	MAND	Matrix AND	126	MBRD	Matrix Bit Read
121	MOR	Matrix OR	127	MBWR	Matrix Bit Write
122	MXOR	Matrix XOR	128	MBSHF	Matrix Bit Shift
123	MXNR	Matrix XNOR	129	MBROT	Matrix Bit Rotate
124	MINV	Matrix Inverse	130	MBCNT	Matrix Bit Count
125	MCMP	Matrix Compare			

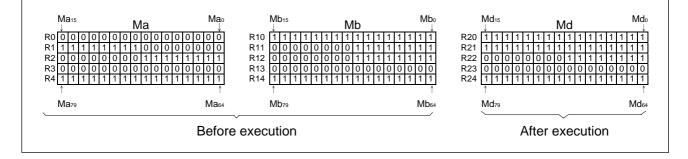

- A matrix is comprised of 2 or more consecutive 16-bit registers. The number of registers comprising the matrix is called the matrix length (L). One matrix altogether has Lx16 bits (points), and the basic unit of the object for each operation is bit.
- The matrix instructions treats the 16×L matrix bits as a set of series points(denoted by M₀ to M_{16L-1}). Whether the matrix is formed by register or not, the operation object is the bit not numerical value.
- Matrix instructions are used mostly for discrete status processing such as moving, copying, comparing, searching, etc, of single point to multipoint (matrix), or multipoint-to-multipoint. These instructions are convenient, important for application.
- Among the matrix instructions, most instruction need to use a 16-bit register as a pointer to points a specific point within the matrix. This register is known as the matrix pointer (Pr). Its effective range is 0 to 16L-1, which corresponds respectively to the bits M₀ to M_{16L-1} within the matrix.
- Among the matrix operations, there are shift left/right, rotate left/right operations. We define the movement toward higher bit is left direction, while the movement toward lower bit is right direction, as shown in the diagram below.


MAN	20 P ND					М	ATRI	X ANI	C							N120 1ANE
			Ladde	er symbo	<u>5 </u>											
		-	120P.I	MAND_				Ma: St	tarting	reaist	er of s	source	matrix	a		
Onerati	on control —		Ma :										matrix			
operation																
			Mb :					Md : S	tarting	g regis	ter of o	destina	ation m	natrix		
			Md :					L :Le	ength	of mat	rix (Ma	a, Mb	and M	d)		
								Ma. M	b. Md	mav c	ombin	e with	V. Z.	P0~P	9 to ser	
			L :							-			-,_,			ve
			L :					indirec		-			.,_,			ve
	N		L :				İ	indirec	t addr	ess ap	oplicat	ion				
	Range	WX	L : WY	WM	WS	TMR			t addr	ess ap	oplicat SR	ion ROR	DR	K	XR]
		WX WX0	L : WY WY0	WM WMO	WS WS0	TMR T0	İ	indirec	t addr	ess ap	oplicat SR	ion ROR	DR			
	Range Ope- rand	WX0	WY0		WS0	то	CTR C0	HR HR	IR R3840	OR R3904	SR R3968	ROR R5000	DR	K 2	XR	
	Ope-	WX0	WY0	WMO	WS0	то	CTR C0	HR HR	IR R3840	OR R3904	SR R3968	ROR R5000	DR D0	K 2	XR V · Z	
	Ope- rand	WX0 WX240	WY0	WM0 WM1896	WS0 WS984	T0 T255	CTR C0 C255	HR R0 R3839	IR R3840 R3903	OR R3904	SR R3968 R4167 	ROR R5000 R8071 	DR D0 D4095	K 2	XR V \ Z P0~P9	
	Ope- rand Ma	WX0 WX240 	WY0	WM0 WM1896	WS0 WS984	T0 T255	CTR C0 	HR R0 R3839	IR R3840 R3903	OR R3904 R3967	SR R3968 R4167	ROR R5000 R8071	DR D0 D4095 O	K 2	XR V \ Z P0~P9	

instruction), this instruction will perform a logic AND (only if 2 bits are 1 will the result be 1, otherwise it will be 0)operation between two source matrixes with a length of L, Ma and Mb. The result will then be stored in the destination matrix Md, which is also the same length (the AND operation is done by bits with the same bit numbers). For example, if $Ma_0 = 0$, $Mb_0 = 1$, then $Md_0 = 0$; if $Ma_1 =$ 1, $Mb_1 = 1$, then $Md_1 = 1$; etc, right up until AND reaches Ma_{16L-1} and Mb_{16L-1} .

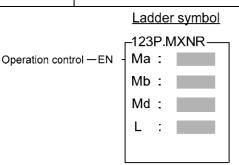


In the program at left, when X0 goes from $0\rightarrow 1$, then matrix Ma, comprised by R0 to R4, and matrix Mb, comprised by R10 to R14, will do an AND operation. The results will be stored back in matrix Md, comprised by R20 to R24. The result is shown at right in the diagram below.


FUN1 MC						ſ	MATF	rix oi	२							121 - OR
	·		Lad	der sym	bol											
			₋ 121F	.MOR_				Ma:	Startin	g regis	ter of	source	e matrix	ка		
Opera	ation control	— EN	Md - Ctarting register of destination re-													
·			Mb : Md : Starting register of destination ma											atrix		
		Level angth of matrix (Ma, Mb, and M													to serve	Э
	Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	К	XR	
		WX0	WY0	WM0	WS0	T0	C0	R0	R3840	R3904	R3968	R5000	D0	2	V · Z	
	Ope- rand	WX240	WY240	WM1896	WS984	T255	C255	R3839	R3903	R3967	R4167	R8071	D4095	256	P0~P9	
	Ма	0	0	0	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc		\bigcirc	
	Mb	0	0	0	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	0	0	0		\bigcirc	
	Md		0	0	0	0	0	0		0	0*	O*	0	~	0	
	L							\bigcirc				○*	\bigcirc	0]
	hen operat										\mathbb{T}	Ma		Mb		/d

instruction), this instruction will perform a logic OR(If any 2 of the bits are 1, then the result will be 1, and only if both are 0 will the result be 0) operation between 2 source matrixes with a length of L, Ma and Mb. The result will then be stored in the destination matrix Md, which is also the same length (the OR operation is done by bits with the same bit numbers). For example, if $Ma_0 = 0$, $Mb_0 = 1$, then $Md_0 = 1$; if $Ma_1 = 0$, $Mb_1 = 0$, then $Md_1 = 0$; etc, right up until OR reaches Ma_{16L-1} and Mb_{16L-1} .

In the program at left, when X0 goes from 0→1, then matrix Ma, comprised by R0 to R4, and matrix Mb, comprised by R10 to R14, will do an OR operation. The results will then be stored into the destination matrix Md, comprised by R10 to R14. In this example, Mb and Md is the same matrix, so after operation the source matrix Mb will replaced by the new value. The result is shown at right in the diagram below.



Operation control-EN	Ladder symb	<u>ool</u>								
	122P.MXOR Ma : Mb : Md : L :		Ma: Sta Mb: Sta Md: Sta L : Len Ma, Mb, indirect	rting real ogth of r Md ma	gister gister matrix ay con	of sour of dest (Ma, N nbine v	rce ma tinatior /Ib and vith V,	trix b matri: Md)		serve
RangeWXOpe- rand Ma Mb Md	WY WM WY0 WM0 U U WY240 WM1896 O O O O O O O O O O	WS0 T0	CTR HR C0 R0	IR R3840 R3903 		SR R3968 R4167 		DR D0 D4095 0 0	K 2 	XR V · Z P0-P9 O O
 When operation construction), this in are different, the 0)between 2 source result will then be a also has a length of bits with the same then Md₀ = 1; if MaxOR reaches Ma₁₆ 	struction will pe n the result w ce matrixes with stored back into of L. For examp bit numbers - for $a_1 = 1$, Mb ₁ = 1,	rforms a logic rill be 1, oth a length of L the destinatio le the XOR op or example, if	XOR (if the nerwise it , Ma and M n matrix Mo peration is o $Ma_0 = 0, M$	e 2 bits will be 1b. The 1, which lone by $1b_0 = 1$,			Ma		МЬ 	Md
x0	122P.MXOR Ma:R 0 Mb:R 10 Md:R 20 L:5		perfor by R(The r comp	rm a X0) to R4 esults \	DR op , and will the y R20	eration matrix en be to R24	n betwe Mb, c stored	een ma ompris in des	atrix Ma ed by stinatio	m 0→1, will a, comprised R10 to R14. n matrix Md, hown at right
	Ma₀ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ↑		Mb 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1	Mbo ↓ 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 ↑		1 1 1 0 0 0 0 0 0		0 0 0	Md₀ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Ma ₆₄	Mb ₇₉			Mb ₆₄		Md ₇₉			Md ₆₄

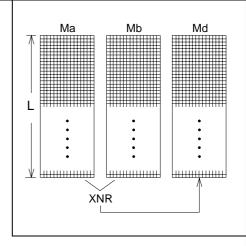
FUN123 P MXNR

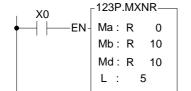
MATRIX EXCLUSIVE NOR (XNR)

FUN123 P MXNR

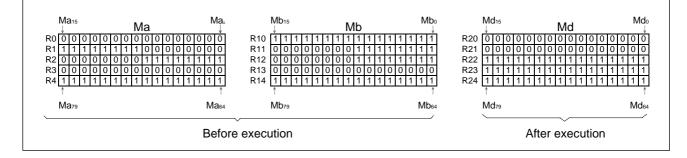
Ma : Starting register of s	source matrix a
-----------------------------	-----------------

Mb : Starting register of source matrix b


Md : Starting register of destination matrix

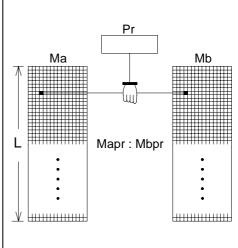

L : Length of matrix (Ma, Mb and Md)

Ma, Mb, Md may combine with V, Z,P0~P9 to serve indirect address application

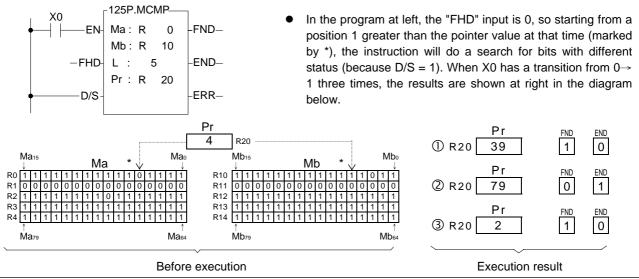

Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	Κ	XR
	WX0	WY0	WMO	WS0	T0	C0	R0	R3840	R3904	R3968	R5000	D0	2	V 、 Z
Ope- rand	WX240	WY240	WM1896	WS984	T255	C255	R3839	R3903	R3967	R4167	R8071	D4095	256	P0~P9
Ma	0	0	0	0	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0		0
Mb	0	\bigcirc	0	0	\bigcirc	0	0	0	0	\bigcirc	0	\bigcirc		0
Md		\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc		\bigcirc	O*	O*	\bigcirc		0
L							0				•	0	0	

When operation control "EN" = 1 or has a transition from 0 to 1 (instruction), will perform a logic XNR operation (if the 2 bits are the same, then the result will be 1, otherwise it will be 0)between 2 source matrixes with a length of L, Ma and Mb. The results will then be stored into the destination matrix Md, which also has the same length (the XNR operation is done by bits with the same bit numbers). For example, if Ma₀ = 0, Mb₀ = 1, then Md₀ = 0; Ma₁ = 0, Mb₁ = 0, then Md₁ = 1; etc, right up until XNR reaches Ma_{16L-1} and Mb_{16L-1}.

When operation control "EN" = 1 or goes from 0 to 1 (instruction), will perform a XNR operation between Ma matrix comprised by R0~R9 and Mb matrix comprised by R10~R19. The results will then be stored into the destination matrix Md comprised by R10~R19. The results are shown at right in the diagram below.

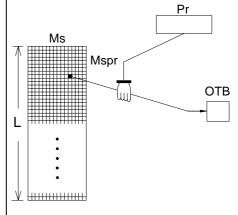


FUN124 P MINV					MAT	RIX I	NVER	SE						FUN124 P MINV
Operation contro	I — EN -		er symb 2.MINV–				Md:S L:L	Starting ength	regist of mat comb	er of c rix (Ma ine wit	lestina s and N	/Id)		erve indirect
Rang Ope- rand Ms Md L	WX0	WY WY0 WY240 O	WM WM1896 	WS - 	TMR T0 T255 0 0	CTR C0 C255 O	HR R0 	IR R3840 R3903 			ROR R5000 R8071 O* O*	DR D0 	K 2 - 256	XR V · Z P0~P9 O
 When ope instruction completely and all the then be stered.), source / invertee ose with	e regist d (all th a value	ter Ms, v ne bits wi e of 0 w	which ha ith a val ill chang	as a le ue of 1	ngth will d	of L, v change	vill be to 0,			Ms		verse Ms —	Md • • •
×0 ∳ -		124P.M Ms: R Md: R L :	2 0			r s N	natrix store b	compri ack in e the	ised by to itse same	y R0 té If (bec matri	o R4 v cause x). Th	vill be in this ne res	inverte exan	m 0 \rightarrow 1, the ed, and then aple Ms and abtained are
	R R R R R	1 1 1 1 2 0 0 0 3 0 0 0	1 1 1 1 0 0 0 0	1 0 0 0 0 1 1 1	0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1	1	R0 (R1 (R2 (R3 (R4 () 0 0 0 1 1 1 1 1 1 1 1	1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0	Md 1 1 1 0 1 1 1 0 0 1 1 1 0 0 0 0 0	1 1 1 1 1 1 0 0 0 1 1 1 0 0 0	Md₀ 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 ↑ Md ₆₄		
	~		Before	executi	on	_/			After	execu	tion			

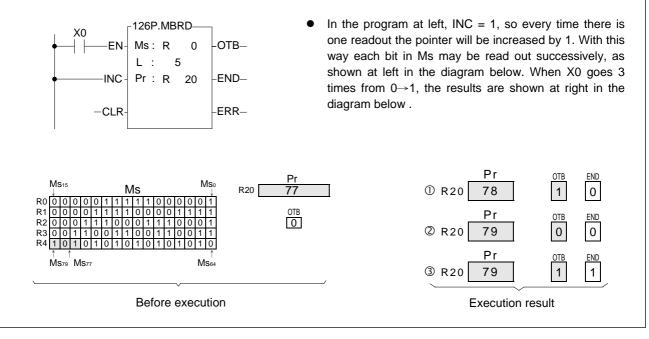

	125 P CMP					MA	TRIX	COMF	ARE						FUN1: MCN	
	·		Ĺ	adder	symbol											
Com	Ladder symbol Md: Starting register of mat Comparison control – EN Ma : FND – Found objective Md: Starting register of mat Mb : Mb : END – Found objective Mb: Starting register of mat Compare from head – FHD L : END – Compare to end Pr : Pointer register Different/Same option – D/S Pr : ERR – Pointer error Ma + DE - Compare to end													rix b 1b) /, Z, P0~	-P9 to	
	Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR	
		WX0	WY0	WMO	WS0	T0	C0	R0	R3840	R3904	R3968	R5000	D0	2	V · Z	
	Ope- rand	WX240	WY240	WM1896	WS984	T255	C255	R3839	R3903	R3967	R4167	R8071	D4095	256	P0~P9	
	Ма	0	\bigcirc	0	0	0	\bigcirc	\bigcirc	0	\bigcirc	0	0	\bigcirc		0	
	Mb	\bigcirc	0	0	\bigcirc	\bigcirc	0	0	0	0	0	0	\bigcirc		0	
	L							\bigcirc				○*	\bigcirc	\bigcirc		
	Pr		0	0	\bigcirc	0	\bigcirc	0		0	0*	0*	0			
• Wh	nen compa	rison c	ontrol '	'EN" = 1	or has	a tran	sition f	rom 0 t	01(0						

comparison control "EN" = 1 or has a transition from 0 to instruction), then beginning from the top pair of bits (Ma₀ and Mb₀) within the 2 matrixes Ma and Mb (when "FHD" = 1 or Pr value is equal to 16L-1), or beginning from the next pair of bits (Mapr + 1 and Mbpr + 1) pointed by pointer Pr (when "FHD" = 0 and Pr value is less than L-1), this instruction will compare and search for pairs of bits with different value (when D/S = 1) or the same value (when D/S = 0). Once match found, pointer Pr will point to the bit number in the matrix met the search condition. The found objective flag "FND" will be set to 1. When it has searched to the final pair of bits in the matrix (Ma_{16L-1}, Mb_{16L-1}), this execution of the instruction will finish, no matter it has found or not. If this happen then The compare-to-end flag "END" will be set as 1, and the Pr value will set to 16L-1 and the next time that this instruction is executed, Pr will automatically return to the starting point of the matrix (Pr = 0) to begin the comparison search.

•

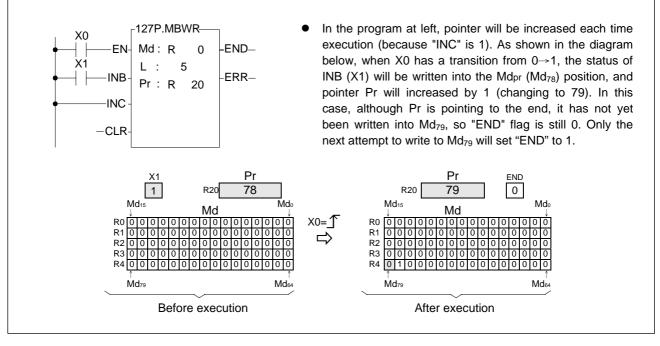


The range for the pointer value is 0 to 16L-1. The Pr value should not be changed by other instructions, as this will affect the result of search. If the Pr value exceeds its range, then the pointer error flag "ERR" will be set to 1, and this instruction will not be carried out.

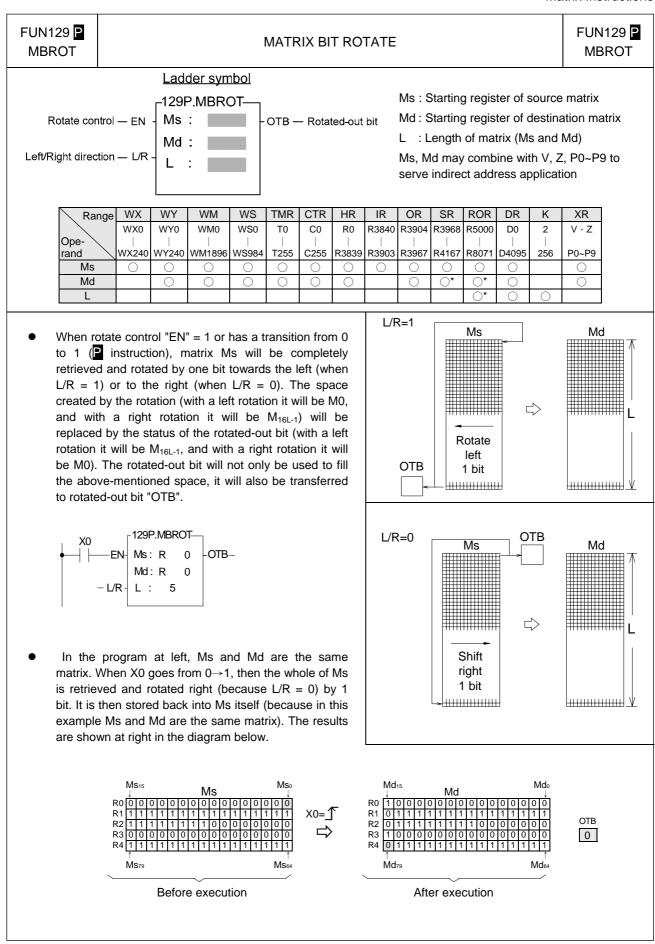


FUN1 MBI						MAT	RIXI	BIT RI	EAD							126 <mark>P</mark> 8RD
Pointer	dout control r increment ointer clear	— INC	_126F _ Ms _ L	:		OTB — END — ERR —	Read	to end		L : Pr: Msn	Matrix Pointe nay co	length r regis mbine	ster	, Z, P()∼P9 to	serve
	Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	Κ	XR	
	Ope-	WX0	WY0 ////	WM0 WM1896	WS084	T0 	C0 C100	R0			R3968 R4167			2 256	V	
	rand \ Ms	0	001240		003904		0	K3039	0	~	K4107		04095	200	FU~F9	
	1015		0	0	0	0	0	0	0	0	0	0*	0	0	0	
	Pr		0	0	0	0	\bigcirc	0		0	O*	0*	0	\bigcirc		
•	When rea	idout co	ontrol "I	EN" = 1	or has	s a tra	nsitior	n from	0 to 1	1					Pr	

• When readout control EN = 1 of has a transition from 0 to 1 (⊇ instruction), the status of the bit Mspr pointed by pointer Pr within matrix Ms will be read out and appear at the output bit "OTB". Before the readout, this instruction will first check the input -pointer clear "CLR". If "CLR" is 1, then the Pr value will be cleared to 0 first before the readout action is carried out. After the readout is completed, If the Pr value has already reached 16L-1 (the final bit), then the read-to-end flag "END" will be set to 1. If Pr is less than 16L-1, then the status of pointer increment "INC" will be checked. If "INC" is 1, then Pr will be increased by 1. Besides this, pointer clear "CLR" can execute independently, and is not affected by other input.

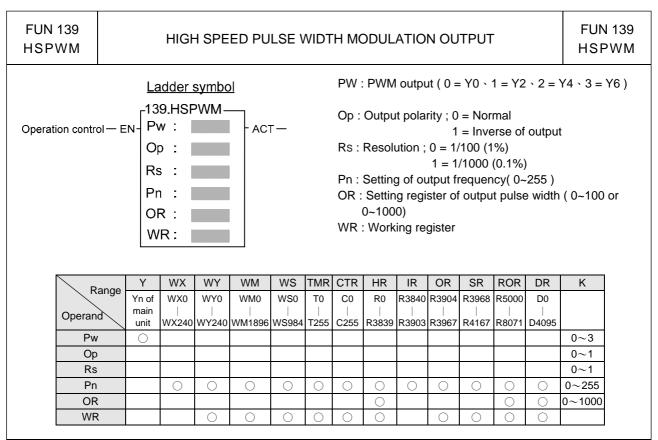


• The effective range of the pointer is 0 to 16L-1. Beyond this range the pointer error flag "ERR" will be set to 1, and this instruction will not be carried out.



FUN127 P MBWR					MAT	RIX E	BIT W	RITE						FUN127 P MBWR
Write-i Pointer increr	ntrol — EN n bit — INB nent — INC clear — CLF	-127 - Md - L - Pr	ider syr P.MBW			— Writ			L: Pr: Mdr	Matrix Pointe nay co	length er regis	n ster • with \		l∼P9 to serve
	Range Ope- rand Md L Pr	WY WY0 WY240 〇	WM WM0 WM1896	WS WS0 WS984	TMR T0 T255 0 1 0	CTR C0 	HR R0 R3839 		SR R3968 R4167 O			K 2 256	XR V · Z P0~P9	-
instruct the bit write-in checke write-in Pr valu reache 1. If th pointer	write contr tion), the s Mdpr poin takes pla d. If "CLR action. At action. At a will be d 16L-1 (la e Pr value will increa e independ	tatus c ted by ace, th " is 1, fter the check ast bit) e is les ased by	of the wr pointer the status then Pr write-in ked aga then th ss than y 1. Besi	ite-in b Pr with s of po r will b a action in. If t ne write 16L-1 a des thi	it "INB hin ma binter o e clea has b he Pr e-to-en and " s, poir	" will t atrix M clear ' red to been c value d flag 'INC" i ater cle	be writ d. Bef CLR" 0 bef omple has will b s 1, t ear "Cl	ten int ore th will b ore th ted, th alread e set t hen th _R" ca	e e e y e		Ms • •	Msp	r	Pr OTB

• The effective range of Pr is 0 to 16L-1. Beyond this range, the pointer error flag "ERR" will be set to 1, and this instruction will not be carried out.



FUN128 P MBSHF					MAT	RIX E	BIT SI	HIFT							FUN128 P MBSHF
Fi	control — EN ill-in bit — INC	- 128 - Ms Md - L			- OTB	— Shi	ft out k	it	Mo L Ms	d: Star matri : Len s, Md ı	ting re x gth of may co	egister matrix	of des (Ms a	tina nd I V, Z	Md) , P0~P9
P Ope- rand M M	Ms O Ad	WY WY0	WM0 WM1896 	WS WS0 WS984 O	TMR T0 T255 () () () () () () () () () () () () () ()	C0	HR R0 		OR R3904 R3967 			DR D0 D4095 	K 2 256	P0-	~ Z ~P9
(P in compl one po by the shift it "INB". will be at the matrix	Ms 0 0 0 0 0 0 0 0 0 0												INB 		
the sa compl 1) by	X0 X0 X0 X0 X0 X0 X0 X0 X0 X0	When ed and in nen be s in the d 128P.1 I- Ms : Md : 3- L :	X0 goe moved t stored ba liagram MBSHF- R 0	es from to the l ack to	n 0→1 left (be Md, ai	I, Ms ecause	will b e L/R	e =	INB	-	Ms Shift right 1 bit	-			Md L
	Ms15 R0 0 0 0 R1 1 1 1 R2 1 1 1 R3 0 0 0 R4 0 1 1 ↑ Ms79	1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1	1 1 1 1 1 1 1 0 0 (1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1	Ms₀ 0 0 1 1 0 0 1 1 Ms₀4	xo=∫ ➡	.	M(R0 0 1 1 R1 1 1 R3 1 1 R4 ↑ M(0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1		1 1 1 1 0 0 0 0	1 1 1 0 0 0 0 0 0 0 0 1 1 1 1			

FUN130 P MBCNT												130 P BCNT			
Count cont 1 or 0 opti		_130P	er sym .MBCN	IT)=0 —	Resul	t is 0		. : Ma) : Re /Is may	trix ler gister : comb	ngth storing ine wit	r of ma I count th V, Z Ilicatior	result , P0~F	s >9 to se	rve
Rar Ope- rand Ms L D	WX0	WY WY0 WY240	WM WM0 WM1896	WS WS0 WS984	TMR T0 T255 	C0	HR R0 		OR R3904 R3967 			D0	K 2 	XR V · Z P0~P9	
Ms matr total am the regis 1.	 When count control "EN" = 1 or has a transition from 0 to 1(instruction), then among the 16L bits of the Ms matrix, this instruction will count the total amount of bits with a status of 1 (when input "1/0" = 1) or the total amount of bits with a status of 0 (when input "1/0" = 0). The results of the counting will be stored into the register specified by D. If the value of these amounts is 0, then the Result-is-0 flag "D = 0" will be set to 1. ^{X0} ^{130P.MBCNT} ^{Ms: R 0} ^{L: 5} ^{D=0-} ^{CD=0-} /li>														
R0 (R1 (R2 (R3 (R4 (0000000 11111 0000000 0000000	Ms 0 0 0 0 0 0 0 1 1 1 0	0000 0000 1111 0000 0000	Ms₀ ↓ 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 Ms₀4	×0=1 ⇔			R20	D 64 X1=0			R20	D 16 X1= of '1' b	/	

I/O Instructions II

Description

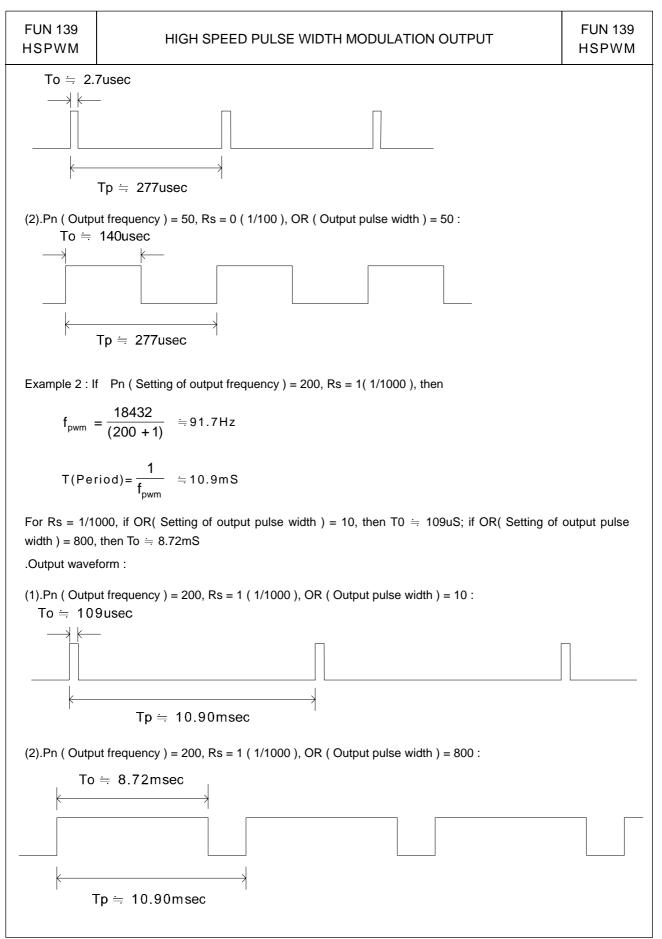
- The setting of resolution(RS) must be same between output0(Y0) and output1(Y2) also the setting of output frequency(Pn). It means both output0 and output1 have the same output frequency and the same output resolution, only the pulse width can be different. Same principle for output2(Y4) and output3(Y6).
- When operation control "EN" = 1, the specified digital output will perform the PWM output, the expression for output frequency as shown bellow:

1.
$$f_{pwm} = \frac{184320}{(P_n + 1)}$$
 while Rs(Resolution)=1/100

2.
$$f_{pwm} = \frac{18432}{(P_n + 1)}$$
 while Rs(Resolution)=1/1000

Example 1 : If Pn (Setting of output frequency) = 50, Rs = 0(1/100), then

$$f_{pwm} = \frac{184320}{(50+1)} = 3614.117 \dots = 3.6 \text{KHz}$$


$$T(Period) = \frac{1}{f_{pwm}} = 277 uS$$

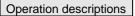
For Rs = 1/100, if OR(Setting of output pulse width) = 1, then T0 \approx 2.7uS; if OR(Setting of output pulse width) = 50, then To \approx 140uS.

.Output waveform :

(1).Pn (Output frequency) = 50, Rs = 0 (1/100), OR (Output pulse width) = 1:

I/O Instructions II

FUN140	HIGH SPEED PULSE OUTPUT INSTRUCTION	FUN140
HSPSO	(Brief description on function)	HSPSO
	- INC - WR : ERR - SR : 2:Y4 & Y5 3:Y6 & Y7 WR : WR : SR : Positioning program starting r WR : Starting working register of ins total 7 registers, can not used	egister. struction operation,
	Range HR DR ROR K Ope- rand R3839 D4095 R8071 256 Ps 0~3 0~3 SR 0 *	


- The NC positioning program of HSPSO (FUN140) instruction is a program written and edited with text. The
 executing unit of program is divided by step (which includes output frequency, traveling distance, and
 transferring conditions). For one FUN140 instruction, can program 250 steps of positioning points at the most.
 Each step of positioning program requires 9 registers. For detailed application, please refer to chapter 13 "the
 NC positioning control of FBs-PLC".
- The benefits of storing the positioning program in the register is that, while in application which use the MMI (man machine interface) as the operation console can save the positioning programs to MMI. Whenever the change of the positioning programs is requested, the download of positioning program can be simply done by a series of write register commands.
- The NC positioning of this instruction doesn't provide the linear interpolation function.
- When execution control "EN"=1, if Ps0~3 is not controlled by other FUN140 instruction (the status of Ps0=M1992, Ps1=M1993, Ps2=M1994, and Ps3=M1995 is ON respectively), it will start to execute from the next step of positioning point (when goes to the last step, it will be restarted from the first step); if Ps0~3 is controlled by other FUN140 instruction (the status of Ps0=M1992, Ps1=M1993, Ps2=M1994, and Ps3=M1995 are OFF), this instruction will wait and acquires the control right of output point immediately right after other FUN140 release the output.
- When execution control input "EN" =0, it stops the pulse output immediately.
- When output pause "PAU" =1 and execution control was 1, it will pause the pulse output. When output pause "PAU" =0 and execution control is still 1, it will continue the unfinished pulse output.
- When output abort "ABT"=1, it will halt and stop pulse output immediately. (When the execution control input "EN" becomes 1 next time, it will restart from the first step of positioning point to execute.)
- While send the output pulse, the output indication "ACT" is ON.
- When there is an execution error, the output indication "ERR" will be ON. (The error code is stored in the error code register.)
- When the execution of each step of positioning program is completed, the output indication "DN" will be ON.
- ** The working mode of Pulse Output must be configured (without setting, Y0~Y7 will be treated as normal output) to any one of following modes, before the HSPSO instruction can be worked.

U/D Mode: Y0 (Y2, Y4, Y6), as up pulse. Y1 (Y3, Y5, Y7), as down pulse.
K/R Mode: Y0 (Y2, Y4, Y6), as the pulse out.. Y1 (Y3, Y5, Y7), as the direction.
A/B Mode: Y0 (Y2, Y4, Y6), as A phase pulse. Y1 (Y3, Y5, Y7), as B phase pulse.
The output polarity for Pulse Output can select to be Normally ON or Normally OFF.

• The working mode of Pulse Output can be configured by WINPROLADDER in "Output Setup" setting page.

NC Positioning Instructions I

FUN141 MPARA		AMETER VALUE SETTING on function)	FUN141 MPARA
Execution cont	Ladder symbol 141.MPARA rol – EN – Ps : SR : SR :	Ps : The pulse output (0~3) selection SR : Starting register for parameter table parameters totally, and occupy 24 r	
	Range HR R0 Ope- rand R3833 Ps SR O	DR ROR K D0 R5000 2 - - - D4095 R8071 256 - - 0~3 - - -	

- It is not necessary to use this instruction. if the system default for parameter values is matching what user demanded, then this instruction is not needed. However, if it needs to change the parameter value dynamically, this instruction is required.
- This instruction incorporates with FUN140 or FUN147 for positioning control purpose.
- Whether the execution control input "EN" = 0 or 1, this instruction will be performed.
- When there are any errors in parameter value, the output indication "ERR" will be ON. (The error code is stored in the error code register.)
- For detailed functional description and usage, please refer to Chapter 11 "The NC positioning control of FBs-PLC" for explanation.

NC Positioning Instructions I

FUN142 P PSOFF	STOP THE HSPSO PULSE OUTPUT (Brief description on function)	FUN142 P PSOFF						
Execution control	Ladder symbol Execution control—EN 142P. PSOFF PS Ps: $0 \sim 3$ Enforce the Pulse Output PSOn (n= Ps) to stop. Command descriptions							
Command desc	riptions							
	• When execution control "EN" =1 or changes from $0 \rightarrow 1$ (P instruction), this instruction will enforce the assigned number set of HSPSO (High Speed Pulse Output) to stop pulse output.							
instruct	n the application for mechanical original point reset, as soon as reach the original point ion to stop the pulse output immediately, so as to make the original point stop at the sa me when performing mechanical original point resetting.							
	tailed functional description and usage, please refer to Chapter 11 "The NC positionir .C" for explanation.	ng control of						

NC Positioning Instructions I

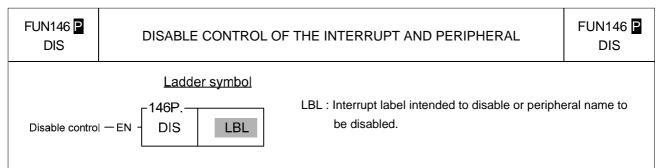
FUN143 P PSCNV		E CURREN eg, Inch, PS)				SPLAY VALUE (in function)	FUN143 P PSCNV
Execution contr	Ladder syr 143P.PSCN Ps : D :		the valu D : Regi	mm (Deg e, so as ster that /ersion. I	g, Inch to mak stores It uses	e number of the pulse po , PS) that has same uni e current position displa the current position afte 2 registers, e.g. if D = D Word and D11 is High V	it as the set yed. er 10, which
		Ope-	HR DR R0 D0 R3839 D4095	ROR R5000 R8071 (0	K 2 256 0 ~3		
Command desci	iptions						

- When execution control "En" =1 or changes from 0→1(P instruction), this instruction will convert the assigned current pulse position (PS) to be the mm (or Deg, Inch, or PS) that has same unit as the set value, so as to make current position displaying.
- Only when the FUN140 instruction is executed, then it can get the correct conversion value by executing this instruction.
- For detailed functional description and usage, please refer to Chapter 11 "The NC positioning control of FBs-PLC" for explanation.

FUN145 P EN	ENABLE CONTROL OF THE INTERRUPT AND PERIPHERAL					
	Ladde	er symbol				
Enable control·	- EN - EN	LBL	LBL : External input or peripheral label name th enabled.	nat to be		

- When enable control "EN" =1 or changes from 0→1 (instruction), it allows the external input or peripheral interrupt action which is assigned by LBL.
- The enabled interrupt label name is as follows:(Please refer the section 9.3 for details)

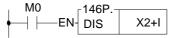
LBL name	Description	LBL name	Description	LBL name	Description
HSTAI	HSTA High speed counter interrupt	X4+I	X4 positive edge interrupt	X10+I	X10 positive edge interrupt
HSC0I	HSC0 High speed counter interrupt	X4-I	X5 negative edge interrupt	X10-I	X10 negative edge interrupt
HSC1I	HSC1 High speed counter interrupt	X5+I	X5 positive edge interrupt	X11+I	X11 positive edge interrupt
HSC2I	HSC2 High speed counter interrupt	X5-I	X5 negative edge interrupt	X11-I	X11 negative edge interrupt
HSC3I	HSC3 High speed counter interrupt	X6+I	X6 positive edge interrupt	X12+I	X12 positive edge interrupt
X0+I	X0 positive edge interrupt	X6-I	X6 negative edge interrupt	X12-I	X12 negative edge interrupt
X0-1	X0 negative edge interrupt	X7+I	X7 positive edge interrupt	X13+I	X13 positive edge interrupt
X1+I	X1 positive edge interrupt	X7–I	X7 negative edge interrupt	X13-I	X13 negative edge interrupt
X1-I	X1 negative edge interrupt	X8+I	X8 positive edge interrupt	X14+I	X14 positive edge interrupt
X2+I	X2 positive edge interrupt	X8-I	X8 negative edge interrupt	X14-I	X14 negative edge interrupt
X2-1	X2 negative edge interrupt	X9+I	X9 positive edge interrupt	X15+I	X15 positive edge interrupt
X3+I	X3 positive edge interrupt	X9-1	X9 negative edge interrupt	X15-I	X15 negative edge interrupt
X3-I	X3 negative edge interrupt				


 In practical application, some interrupt signals should not be allowed to work at sometimes, however, it should be allowed to work at some other times. Employing FUN146 (DIS) and FUN145 (EN) instructions could attain the above mentioned demand.

Program example

 When M0 changes from 0→1, it allows X0 to send interrupt when X0 changes from 0→1. CPU can rapidly process the interrupt service program of X0+I.

Enable/Disable Instructions

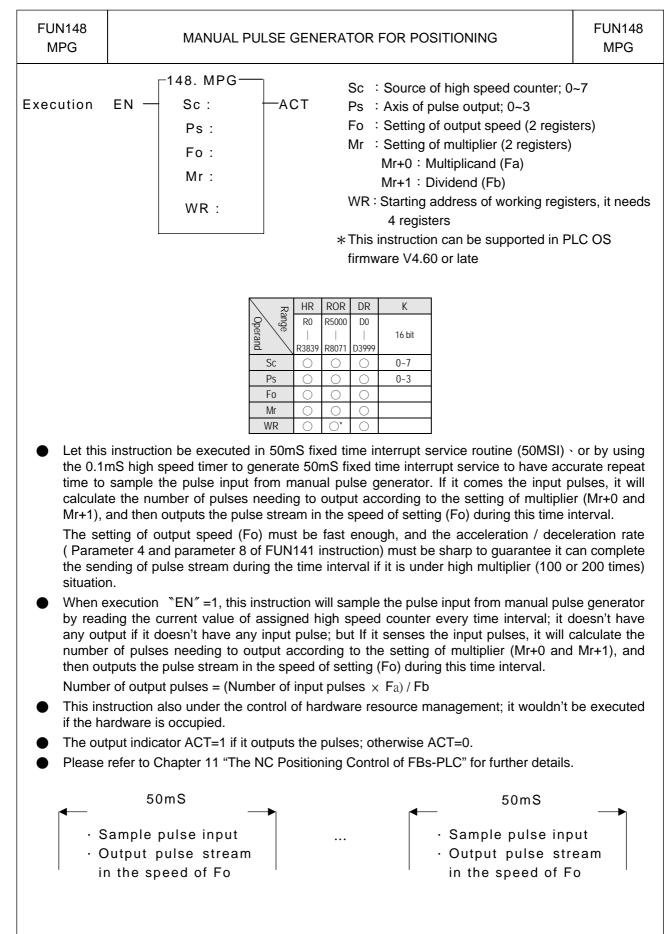


- When prohibit control "EN" =1 or changes from 0→1 (P instruction), it disable the interrupt or peripheral operation designated by LBL.
- The interrupt label name is as follows:

LBL name	Description	LBL name	Description	LBL name	Description
HSTAI	HSTA High speed counter interrupt	X4+I	X4 positive edge interrupt	X10+I	X10 positive edge interrupt
HSC0I	HSC0 High speed counter interrupt	X4–I	X5 negative edge interrupt	X10-I	X10 negative edge interrupt
HSC1I	HSC1 High speed counter interrupt	X5+I	X5 positive edge interrupt	X11+I	X11 positive edge interrupt
HSC2I	HSC2 High speed counter interrupt	X5-I	X5 negative edge interrupt	X11-I	X11 negative edge interrupt
HSC3I	HSC3 High speed counter interrupt	X6+I	X6 positive edge interrupt	X12+I	X12 positive edge interrupt
X0+I	X0 positive edge interrupt	X6-I	X6 negative edge interrupt	X12-I	X12 negative edge interrupt
X0-I	X0 negative edge interrupt	X7+I	X7 positive edge interrupt	X13+I	X13 positive edge interrupt
X1+I	X1 positive edge interrupt	X7–I	X7 negative edge interrupt	X13-I	X13 negative edge interrupt
X1-I	X1 negative edge interrupt	X8+I	X8 positive edge interrupt	X14+I	X14 positive edge interrupt
X2+I	X2 positive edge interrupt	X8-I	X8 negative edge interrupt	X14-I	X14 negative edge interrupt
X2-I	X2 negative edge interrupt	X9+I	X9 positive edge interrupt	X15+I	X15 positive edge interrupt
X3+I	X3 positive edge interrupt	X9-I	X9 negative edge interrupt	X15-I	X15 negative edge interrupt
X3–I	X3 negative edge interrupt				

• In practical application, some interrupt signals should not be allowed to work at certain situation. To achieve this, this instruction may be used to disable the interrupt signal.

Program example


• When M0 changes from 0→1, it prohibits X2 from sending interrupt when X2 changes from 0→1.

FUN 147 MHSPO	Multi-Axis Hig	FUN 147 MHSPO	
control	Ladder symbol 147.MHSPO EN - Gp : ACT - Acting SR : SR : ERR - Error ABT - DN - Done	WR : Starting register for instruction operat explanation). It controls 9 registers, program cannot repeat in using.	ion (example
	Ope-	HR DR ROR K R0 D0 R5000 3839 D3999 R8071 0~1 0~1	

Instruction Explanation

- The FUN147 (MHSPO) instruction is used to support the linear interpolation for multi-axis motion control, it consists of the motion program written and edited with text programming. We named every position point as a step (which includes output frequency, traveling distance, and transfer conditions). Every step of positioning point owns 15 registers for coding.
- 2. The FUN147 (MHSPO) instruction can support up to 4 axes for simultaneous linear interpolation; or 2 sets of 2-axis linear interpolation (i.e. Gp0 = Axes Ps0 & Ps1; Gp1 = Axes Ps2 & Ps3)
- 3. The best benefit to store the positioning program into the registers is that in the case of association with MMI (Man Machine Interface) to operate settings, it may save and reload the positioning program via MMI when replacing the molds.
- 4. When execution control "EN"=1, if the other FUN147/FUN140 instructions to control Ps0~3 are not active (corresponding status of Ps0=M1992, Ps1=M1993, Ps2=M1994, and Ps3=M1995 will be ON), it will start to execute from the next step of positioning point (when goes to the last step, it will be restarted from the first step to perform); if Ps0~3 is controlled by other FUN147/FUN140 instruction (corresponding status of Ps0=M1992, Ps1=M1993, Ps2=M1995 would be OFF), this instruction will acquire the pulse output right of positioning control once the controlling FUN147/FUN140 has released the control right.
- 5. When execution control input "EN" =0, it stops the pulse output immediately.
- 6. When output pause "PAU" =1 and execution control "EN" was 1 beforehand, it will pause the pulse output. When output pause "PAU" =0 and execution control is still 1, it will continue the unfinished pulse output.
- 7. When output abort "ABT"=1, it stops pulse output immediately. (When the execution control input "EN" becomes 1 next time, it will restart from the first step of positioning point to execute.)
- 8. While the pulse is in output transmitting, the output indication "ACT" is ON.
- 9. When there is execution error, the output indication "ERR" will be ON. (The error code is stored in the error code register.)
- 10. When each step of positioning point is complete, the output indication "DN" will be ON.
- 11. Please refer to Chapter 11 "The NC Positioning Control of FBs-PLC" for further details.

NC Positioning Instructions II

Communication Instructions

FUN150 M-BUS	MODBUS MASTER INSTRUCTION (WHICH MAKES PLC AS THE MODBUS MASTER THROUGH PORT 1~4)	FUN150 M-BUS		
Execution control ASCII/RTU Abort	- EN - Pt - ACT as the Modbus master SR SR SR SR - A/R WR ERR SR WR ERR WR : Starting register for instruction operation	 Pt : 1~4, specify the communication port being acted as the Modbus master SR : Starting register of communication program WR :Starting register for instruction operation. It controls 8 registers, the other programs can not repeat in using. 		
Description	Range HR ROR DR K Ope- R0 R5000 D0 rand R3839 R8071 D4095 Pt Image: Constraint of the state			

- 1. FUN150 (M-BUS) instruction makes PLC act as Modbus master through Port 1~4, thus it is very easy to communicate with the intelligent peripheral with Modbus RTU/ASCII protocol.
- 2. The master PLC may connect with 247 slave stations through the RS-485 interface.
- 3. Only the master PLC needs to use Modbus RTU/ASCII instruction.
- 4. It employs the program coding method or table filling method to plan for the data flow controls; i.e. from which one of the slave station to get which type of data and save them to the master PLC, or from the master PLC to write which type of data to the assigned slave station. It needs only seven registries to make definition; every seven registers define one packet of data transaction.
- 5. When execution control "EN" changes from 0→1 and both inputs Pause "PAU" and Abort "ABT" are 0, and if Port 1/2/3/4 hasn't been controlled by other communication instructions [i.e. M1960 (Port1) / M1962 (Port2) / M1936 (Port3) / M1938 (Port4) = 1], this instruction will control the Port 1/2/3/4 immediately and set the M1960/M1962/M1936/M1938 to be 0 (which means it is being occupied), then going on a packet of data transaction immediately. If Port 1/2/3/4 has been controlled (M1960/M1962/M1936/M1938 = 0), then this instruction will enter into the standby status until the controlling communication instruction completes its transaction or pause/abort its operation to release the control right (M1960/M1962/M1936/M1938 =1), and then this instruction will become enactive, set M1960/M1962/M1936/M1938 to be 0, and going on the data transaction immediately.
- 6. While in transaction processing, if operation control "ABT" becomes 1, this instruction will abort this transaction immediately and release the control right (M1960/M1962/M1936/M1938 = 1). Next time, when this instruction takes over the transmission right again, it will restart from the first packet of data transaction.
- 7. While "A/R" =0 , Modbus RTU protocol ; "A/R" =1 , Modbus ASCII protocol \circ
- 8. While it is in the data transaction, the output indication "ACT" will be ON.
- 9. If there is error occurred when it finishes a packet of data transaction, the output indication "DN" & "ERR" will be ON.
- 10. If there is no error occurred when it finishes a packet of data transaction, the output indication "DN" will be ON.

Communication Instructions

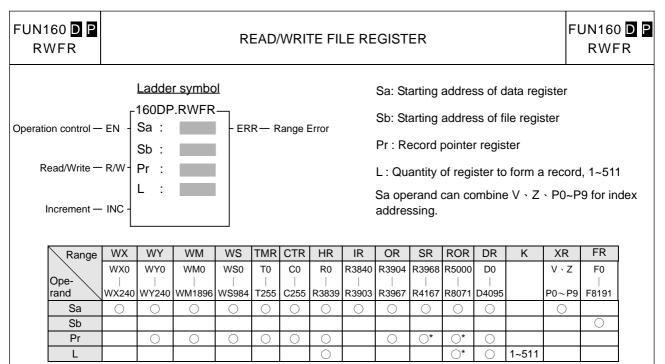
FUN 151 CLINK	COM (WHICH MAKES PLC A		FUN 151 CLINK	
	Ladder symbol 151P.CLINK Pt : MD : MD : PAU - SR : WR : WR : MR -	-RR — SR : Starting regis (see examp -ERR — WR : Starting regis example for i	t, 1~4 ion mode, MD0~MD3 iter of communication ole for its explanation) ster for instruction ope its explanation). It con igrams can not repeat	ration (see trols 8 registers,
Description		Range HR ROR DR K R0 R5000 D0 Ind R3839 R8071 D4095 Pt Image Image 1~4 MD Image Image Image Image WR Image Image Image Image		

● This instruction provides 4 instruction modes MD0~MD3. Of which, three instruction modes MD0~MD2, are "regular link network", and the MD3 is the "high speed link network". The following are the function description of respective modes.

• MD0 : Master station mode for FATEK CPU LINK.

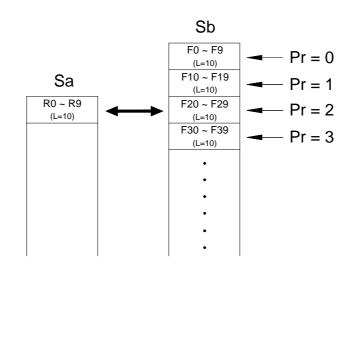
For any PLC, whose ladder program contains the FUN151:MD0 instruction, will become master station of FATEK CPU LINK network. The master station PLC will base on the communication program stored in data registers in which the target station, data type, data length, etc, were specified to read or write slave station via "FATEK FB-PLC Communication Protocol" command. With this approach up to 254 PLC stations can share the data each other

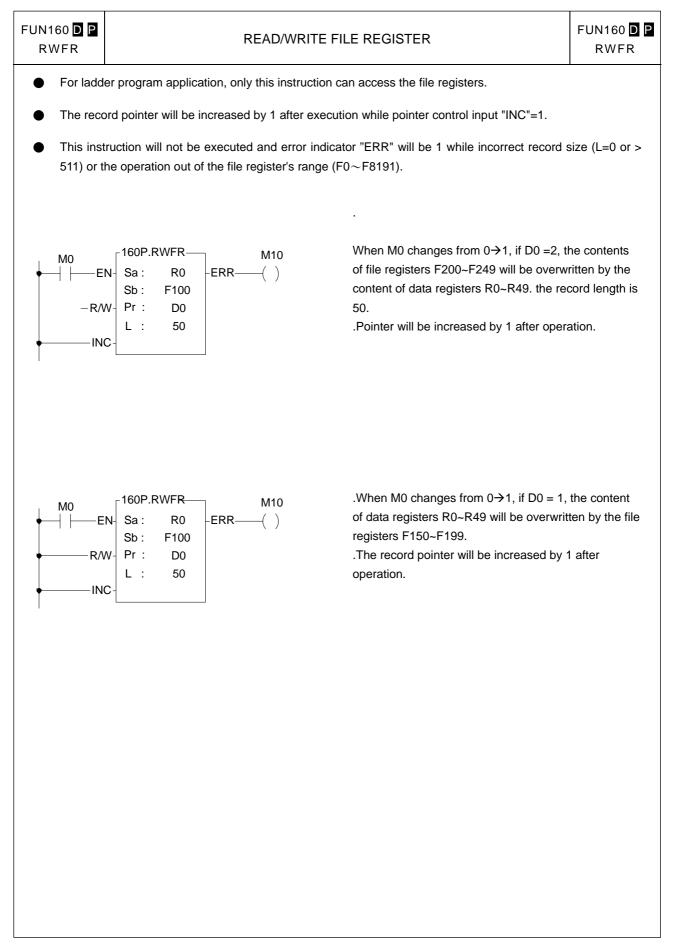
• MD1 : Active ASCII data transmission mode.


With this mode, the FUN151 instruction will parse the communication program stored in data registers and base on the parsing result send the data from port2 to ASCII peripherals (such as computer, other brand PLC, inverter, moving sign, etc, this kind of device can command by ASCII message). The operation can set to be (1) transmit only, which ignores the response from peripherals, (2) transmit and then to receive the response from peripherals. When operate with mode (2) then the user must base on the communication protocol of peripheral to parsing and prepare the response message by writing the ladder instructions.

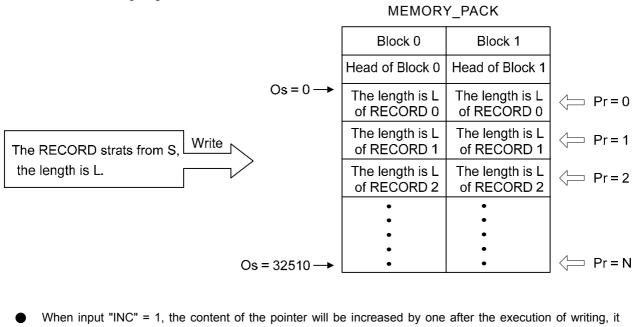
• MD2 : Passive ASCII data receiving mode.

With this mode, the FUN151 will first wait to receive ASCII messages sent by external ASCII peripherals (such as computer, other brand PLC, card reader, bar code reader, electronic weight, etc. this kind of device can send ASCII message). Upon receiving the message, the user can base on the communication protocol of peripheral to parsing and react accordingly. The operation can set to (1) receive only without responding, or (2) receive then responding. For operation mode (2) the user can use the table driver method to write a communication program and after received a message this instruction can base on this communication program automatically reply the message to peripheral.


• MD3 : Master station mode of FATEK high speed CPU LINK.

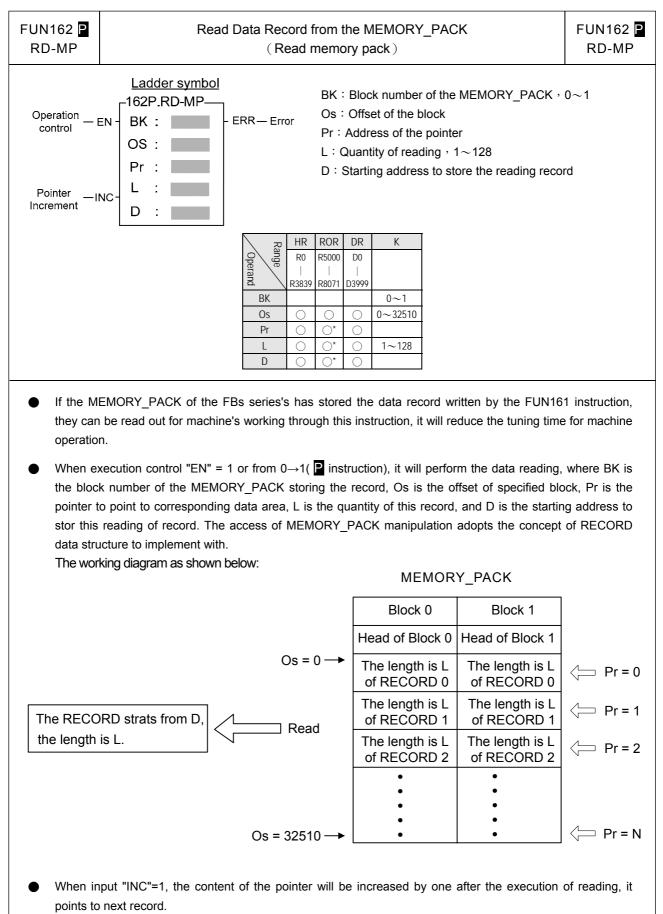

The most distinguished difference between this mode and MD0 is that the communication response of MD3 is much faster than MD0. With The introduction of MD3 mode CPU LINK, The FATEK PLC can easily to implement the application of distributed control and real time data monitoring.

Description

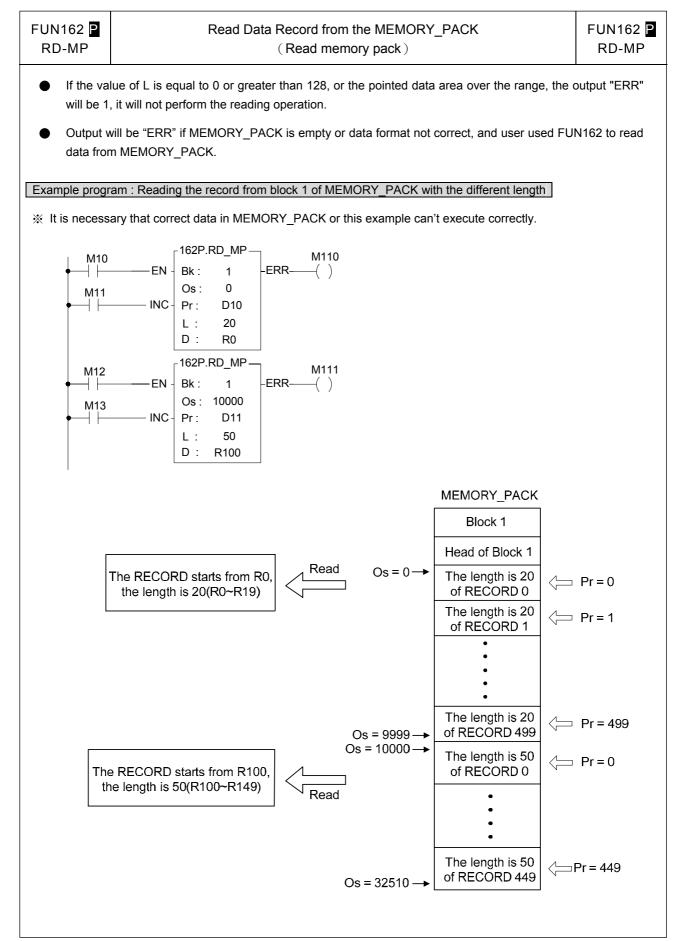

When operation control "EN"=1 or changes from 0→1(P instruction), it will perform the read ("R/W"=1) or write ("R/W"=0) file register operation. While reading, the content of data registers starting from Sa will be overwritten by the content of file registers addressed by the base file register Sb and record pointer Pr; while writing, the content of file registers addressed by the base file register Sb and record pointer Pr will be overwritten by the content of data registers starting from Sa; L is the operation quantity or record size. The access of file register adopts the concept of RECORD data structure to implement. For example, Sa=R0, Sb=F0, L=10, the read/write details shown as below

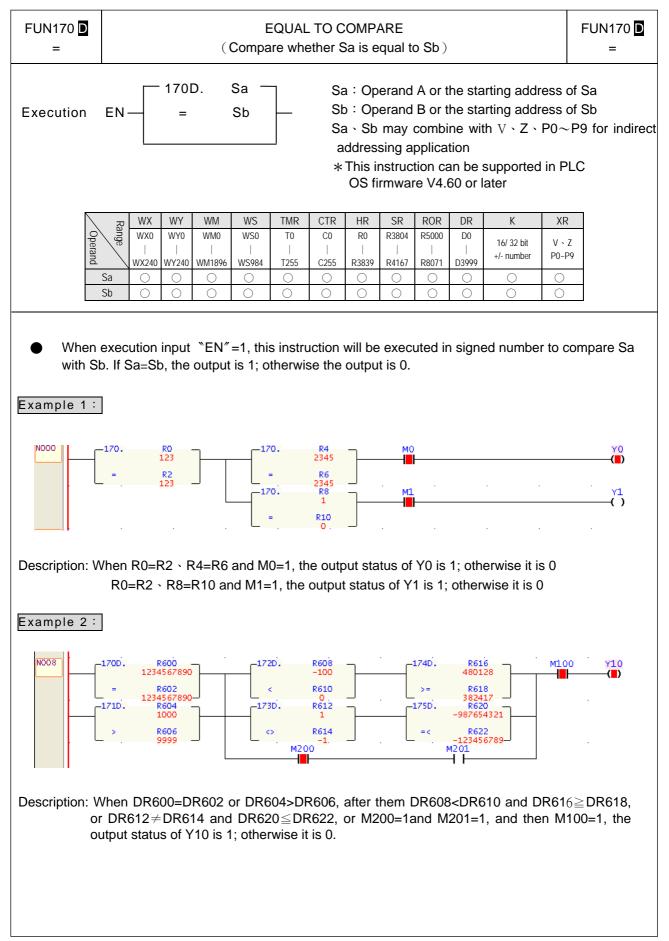
FUN161P WR-MP	Wr	Write Data Record into the MEMORY_PACK (Write memory pack)								
Operation control — EN Pointer — ING Increment	BK : Os : Pr :	S : Starting address of the source data BK : Block number of the MEMORY_PACK , or Os : Offset of the block Pr : Address of the pointer L : Quantity of writing , 1~128 ERR – Error WR : Starting address of working registers, it to registers S may combine with V \lapha Z \lapha P0~P9 for indirect application					takes 2			
		Range Operand S BK Os Pr L WR	HR R0 R3839 O O O O O O O O	ROR R5000 R8071 O C * O * O * O *	DR D0 D4095 O	К 0~1 0~32510 1~128	XR V · Z P0~P9			
program		he FUN1	61/Fl	JN16	2 inst	ructions, t	the MEN	ong term storing of the MORY_PACK can be w loading.		

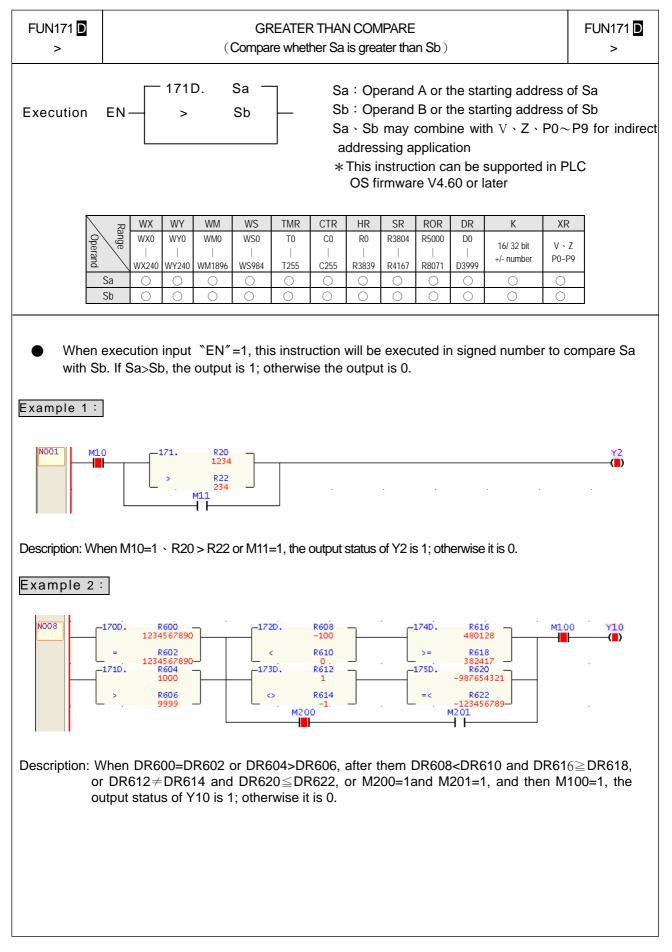
When execution control EN changes from $0 \rightarrow 1$, it will perform the data writing, where S is the starting address of the source data, BK is the block number of the MEMORY_PACK to store this writing, Os is the offset of specified block, Pr is the pointer to point to corresponding data area, L is the quantity of this writing. The access of MEMORY_PACK manipulation adopts the concept of RECORD data structure to implement with. The working diagram as shown below :

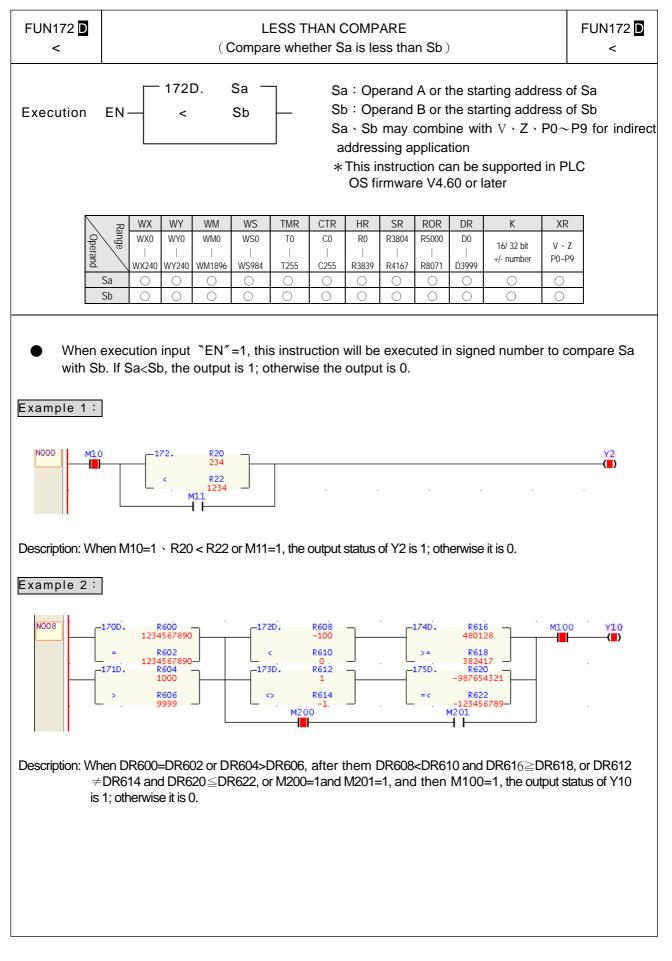


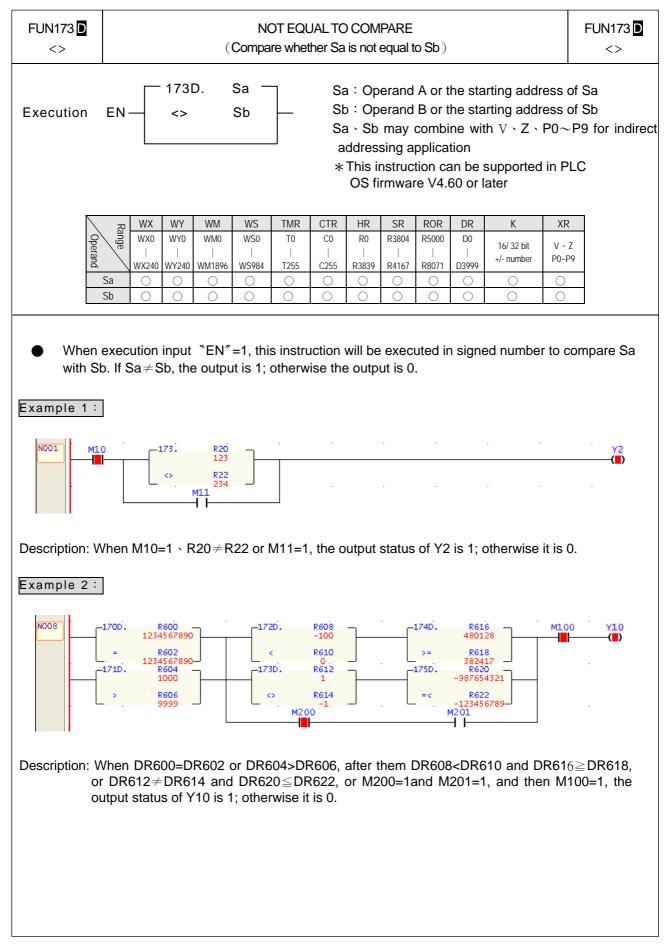
points to next record.

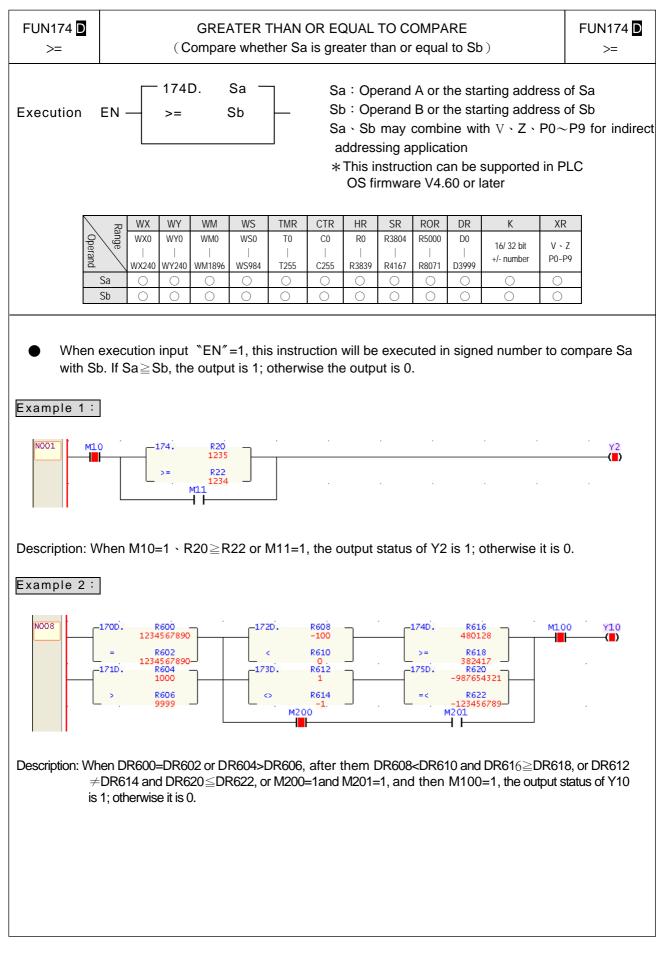

Data Movement Instructions II


FUN161P WR-MP	Write Data Record into the MEMORY_PACK (Write memory pack)	FUN161P WR-MP
will be 1, It needs 	ue of L is equal to 0 or greater than 128, or the pointed data area over the range, the o it will not perform the writing operation. couple of PLC solving scans for data writing and verification; during the execution, the c	output "ACT"
completi The ME paramete paramete	when completing the execution and verification without the error, the output "DN" will ng the execution and verification with the error, the output "ERR" will be 1. MORY_PACK can be configured to store the user's ladder program or machin ers, or both. The ladder program can be stored into the block 0 only, but the machin ers can be stored into block 0 or 1; the memory capacity of each block has 32K Word in	e's working ne's working
Example progr	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \mbox{am : Writing the record into block 1 of MEMORY_PACK with the different length} \end{array} \end{array} \\ \hline \mbox{am : Writing the record into block 1 of MEMORY_PACK with the different length} \end{array} \\ \hline am : Relation of the second secon$	
-	$\begin{array}{c} \text{MEMORY_PACK} \\ \hline \\ \text{Block 1} \\ \text{Head of Block 1} \\ \text{Head of Block 1} \\ \text{The length is 20} \\ \text{of RECORD 0} \\ \hline \\ \text{The length is 20} \\ \text{of RECORD 1} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
	$\begin{array}{c} Os = 9999 \rightarrow \\ Os = 10000 \rightarrow \\ \hline \\ The length is 50} \\ \hline \\ et \\ et \\ et \\ et \\ et \\ et \\ et $	
	$Os = 32510 \rightarrow Os $	


Data Movement Instructions II



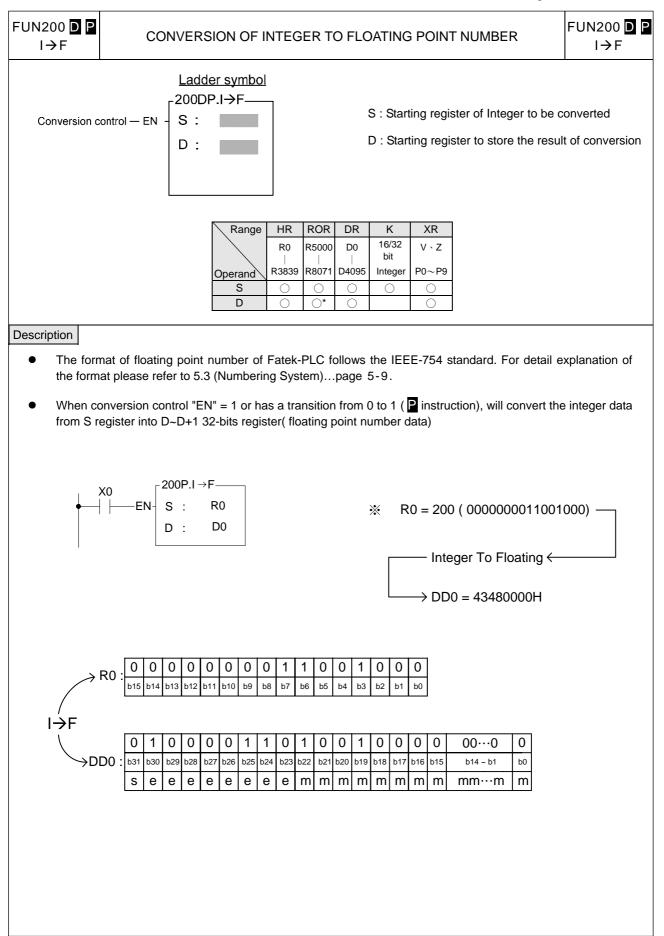

Data Movement Instructions II

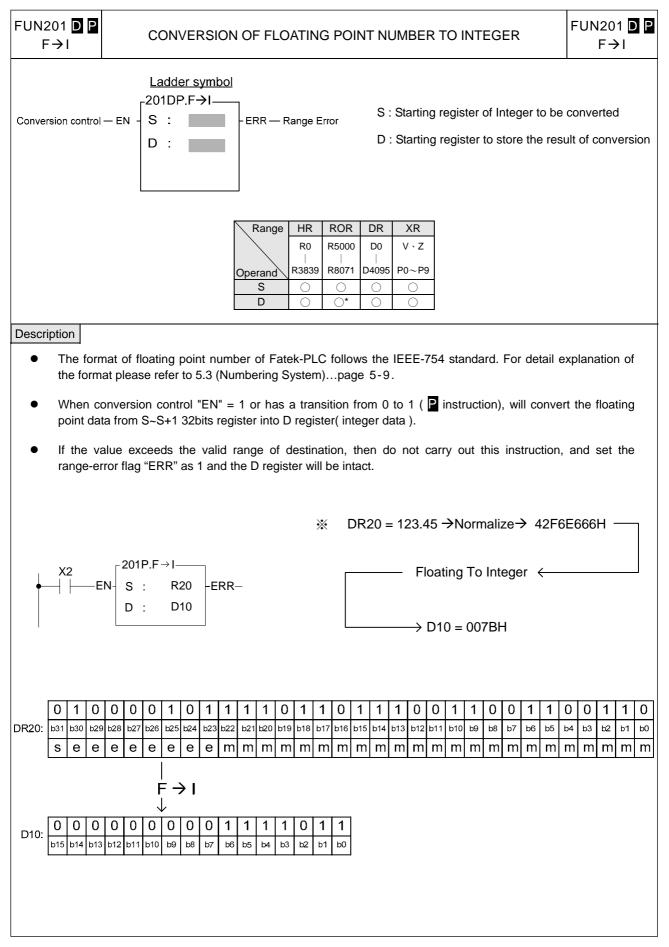


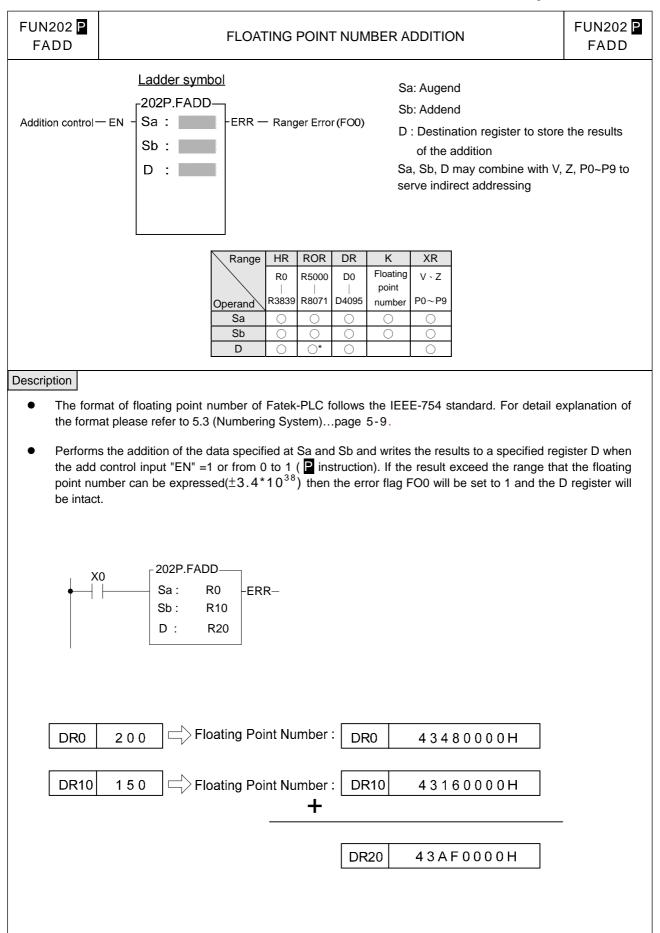
FUN175 D =<		LESS THAN OR EQUAL TO COMPARE (Compare whether Sa is less than or equal to Sb)									
Execution	EN — =<	D. Sa ⁻ Sb		St Sa a	o: Op a Sb ddres This ii	erand may sing a nstruc	B or t combi pplica	he sta ne wit tion an be s	supported	ress o P0∼	f Sb P9 for indirect
	R WX WY	WM WS	TMR	CTR	HR	SR	ROR	DR	К	XR	
Operand	Range WX WY	WM0 WS0	T0 	C0 	R0 	R3804	R5000	D0 	16/ 32 bit +/- number	V • Z P0~P9	
	WX240 WY240 Sa O	WM1896 WS984	T255	C255	R3839	R4167	R8071	D3999	0	0	_
	Sb 🔿 🔿	0 0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	0	\bigcirc	
with SI	0 175.	e output is 1;	otherw	vise the	e outp	ut is 0					Y2
Description: Wr	nen M10=1 、 R20]	\leq R22 or M11	l=1, the	output	status	of Y2 is	s 1; oth	erwise	it is 0.		
	170D. R600 1234567890 = R602 1234567890 171D. R604 1000 > R606 9999		20). ≺ 30). ↔ M2(]		174D. >= 175D. =<	R61 4801 3824 R62 -98765 -12345 1201 I	28 8 17 4321 2	M1.00	• • • • • • • • • • • • • • • • • • •
≠	nen DR600=DR60 DR614 and DR6 1; otherwise it is 0	20≦DR622, o									

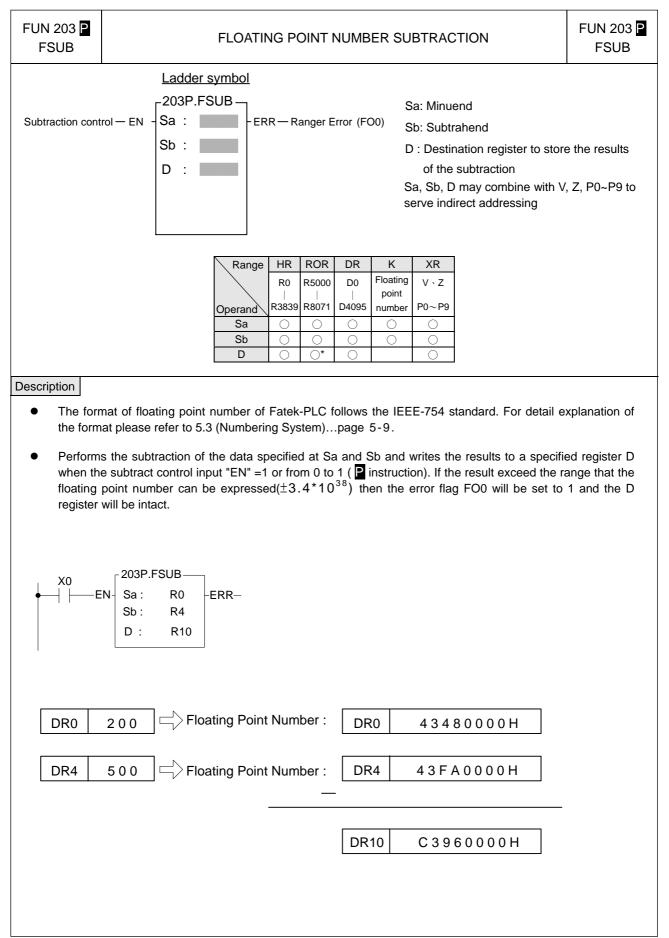
Other Instructions

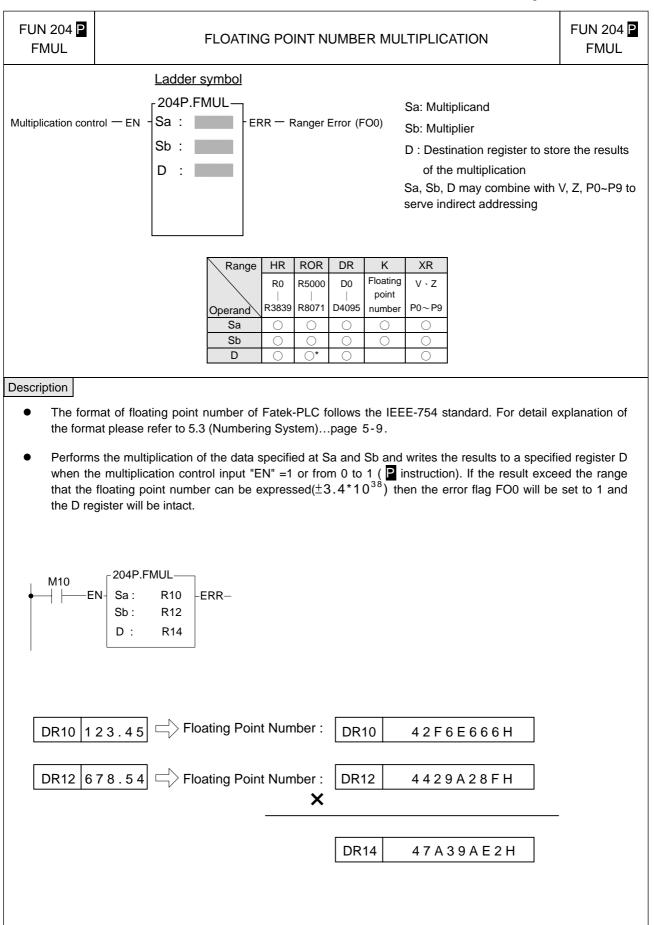
FUN190 STAT				READ SYSTEM STATUS	FUN190 STAT
Execution	EN —	-190.8 Gp : D		Gp : Specified status group 0 : Get information of I/O expansion 1~3 : Reserved D : Starting address of register to store the sy D+0 : Quantity of status D+1 : Status 1	stem status
Operand G D	HR ROR R0 R5000 I I R3839 R8071 Image: Constraint of the second seco	D0 	К 0~3	 D+N: Status N * This instruction can be supported in PLC firmware V4.62 or later 	OS

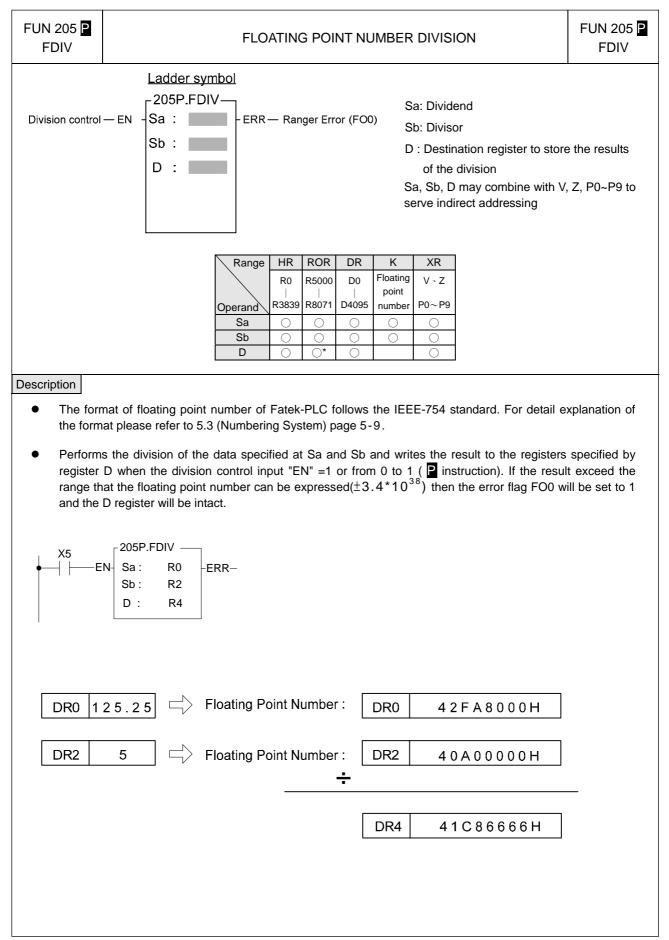

When execution "EN" =1, this instruction being executed, and if Gp=0, it means to get the information of I/O expansion modules; total quantity of I/O expansion modules will be stored in D register, code of I/O expansion module will be stored in D+1~D+N registers in order. Gp=1~3, reserved for future.

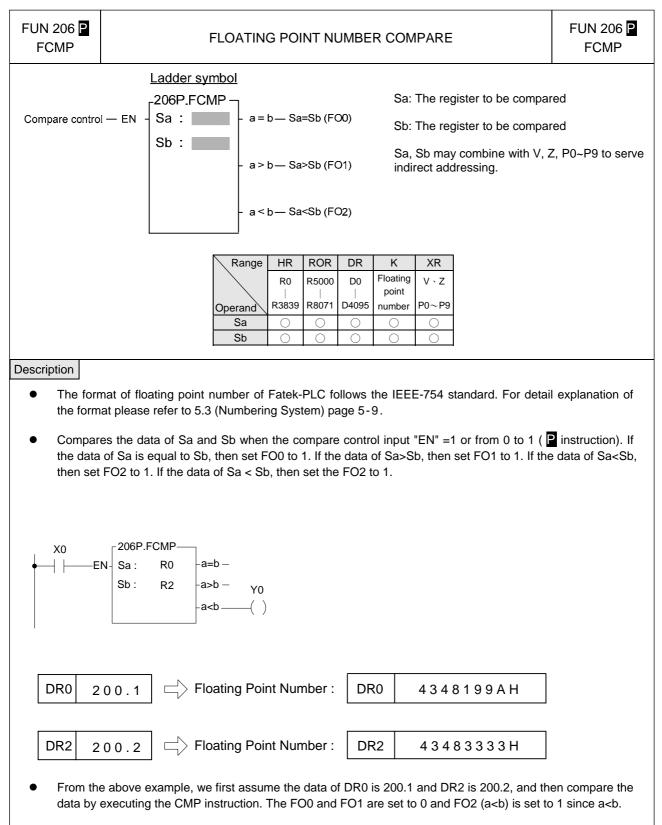

Code of I/O	Name of I/O					
Expansion	Expansion Module					
Module						
1	FBs-8XYR					
2	FBs-8X					
3	FBs-8YR					
4	FBs-16XYR					
5	FBs-20X					
6	FBs-16YR					
7	FBs-24X					
8	FBs-24Y					
9	FBs-24XYR					
10	FBs-40XYR					
11	FBs-60XYR					
12	FBs-7SG1S (Decode)					
13	FBs-7SG1H					
	(Non-decode)					
14	FBs-7SG2S (Decode)					
15	FBs-7SG2H (Non-decode)					
16	FBs-6AD					
17	FBs-2DA					
18	FBs-4DA					
19	FBs-4PT					
20	FBs-4A2D					

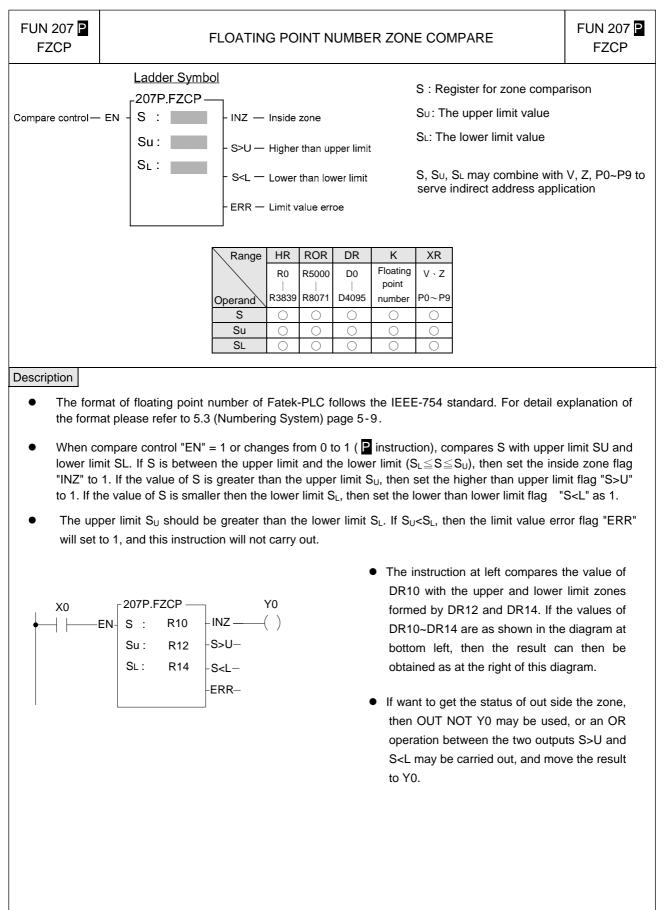

Code of I/O	Name of I/O					
Expansion	Expansion Module					
Module						
21	FBs-6TC					
22	FBs-6RTD					
23	FBs-16TC					
24	FBs-16RTD					
25	FBs-2TC					
26	FBs-2A4TC					
27	FBs-2A4RTD					
28	FBs-6NTC					
29	FBs-16NTC (Reserved)					
30	FBs-32DGI					
31	FBs-VOM					
32	FBs-1LC					

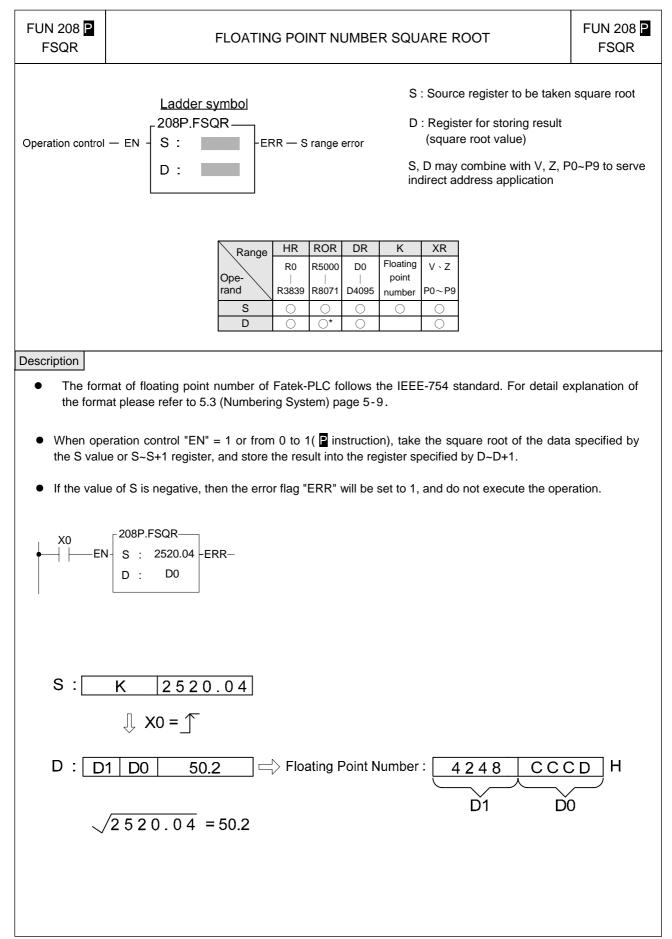

Other Instructions

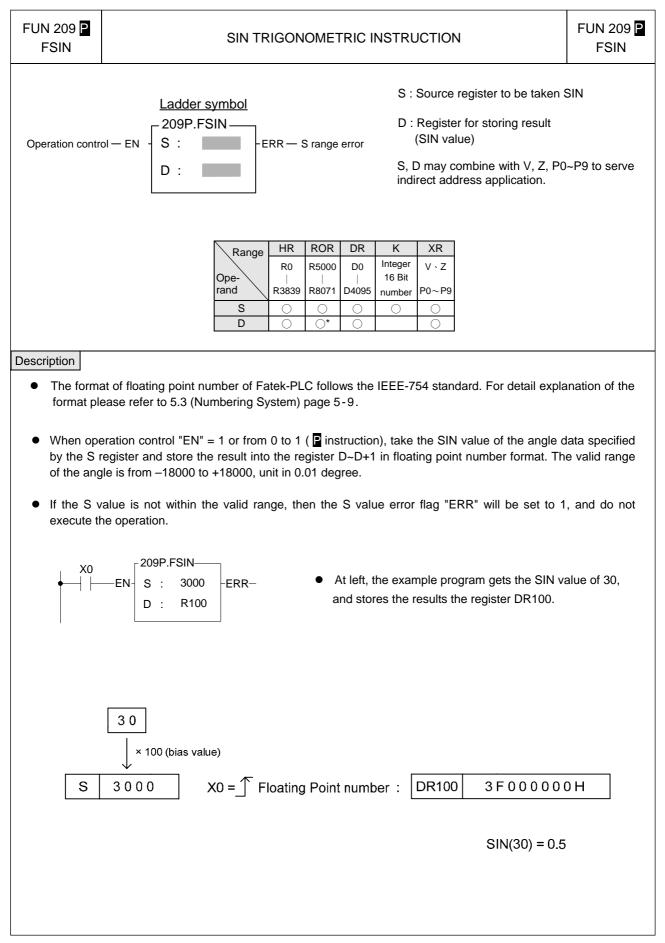

UN190 STAT)	READ SYSTEM STATUS							
Examp	le: There	are two I/O ex	pansion mc	dules FB	s-2DA + FB	3s-6AD installed in one system			
N003	M500 .		· ·			EN- Gp: 0 0 0 : 0200 2			
🚾 State	ıs Monitori	ng							
Ref. No.	Status	Data	Ref. No.	Status	Data				
M500	Enable	ON							
D200	Decimal	2							
	Decimal	17							
D201									
D201 D202	Decimal	16							

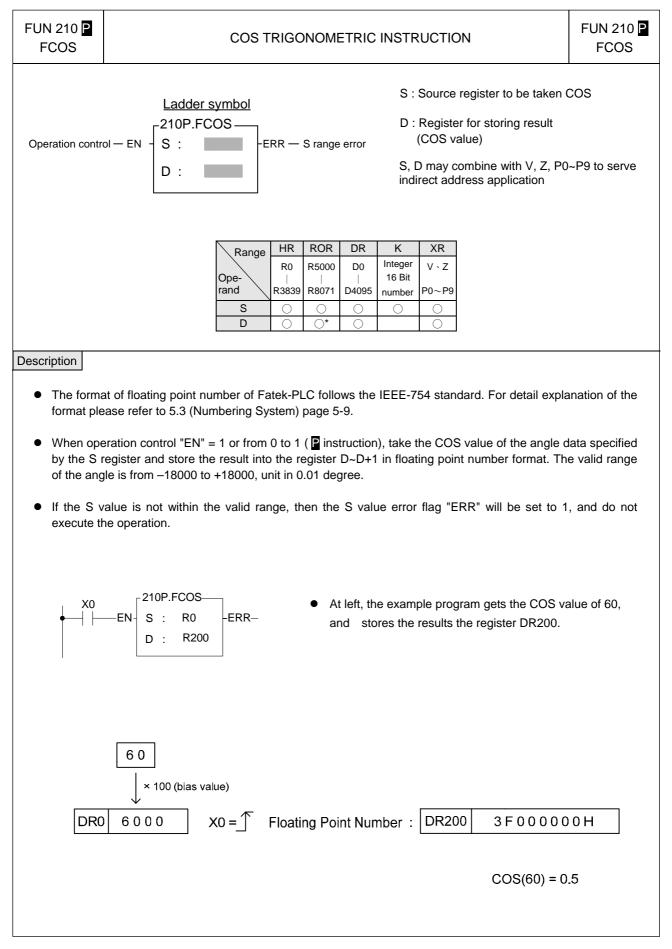


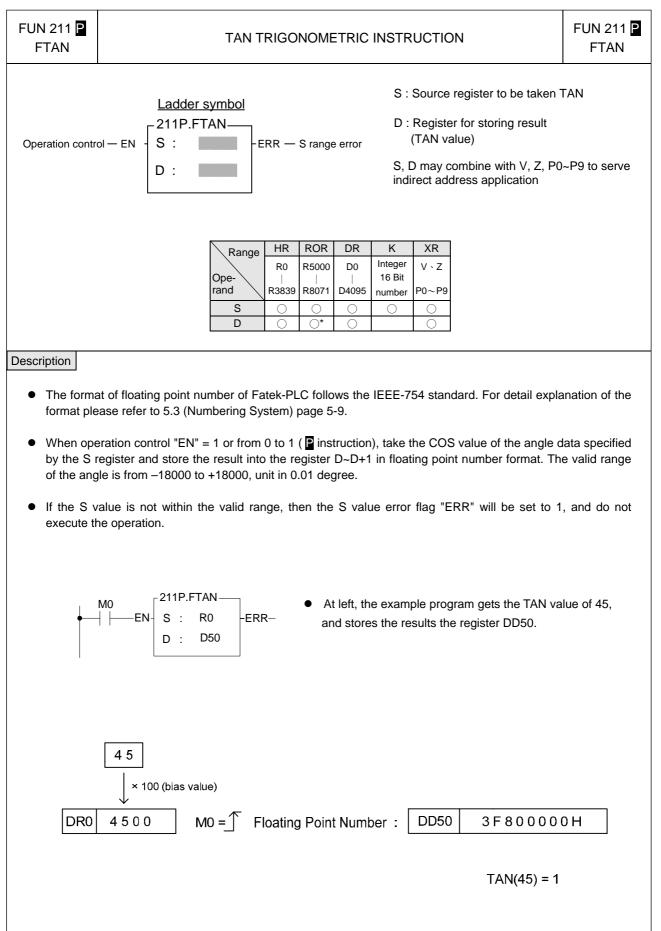


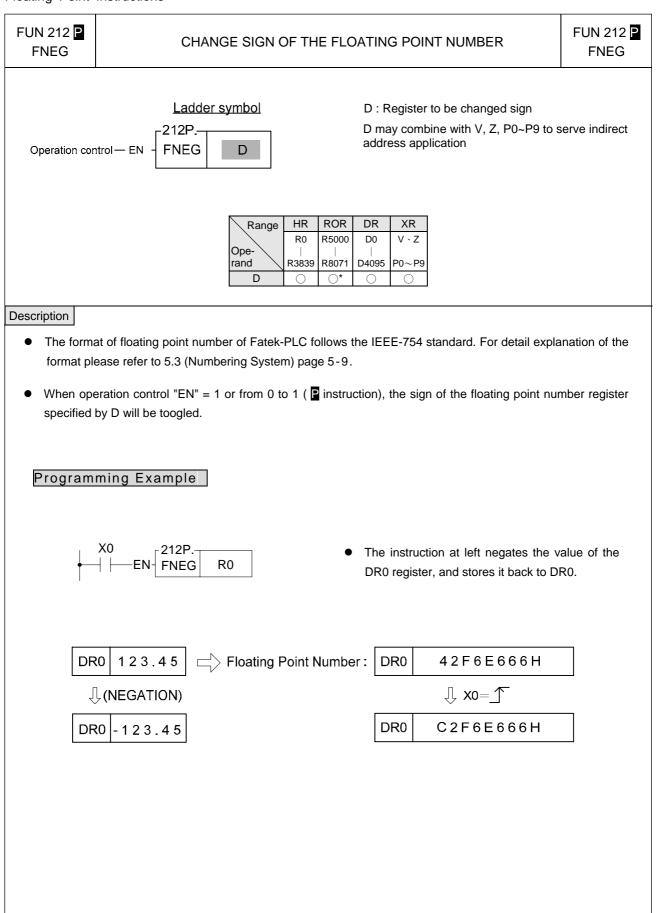


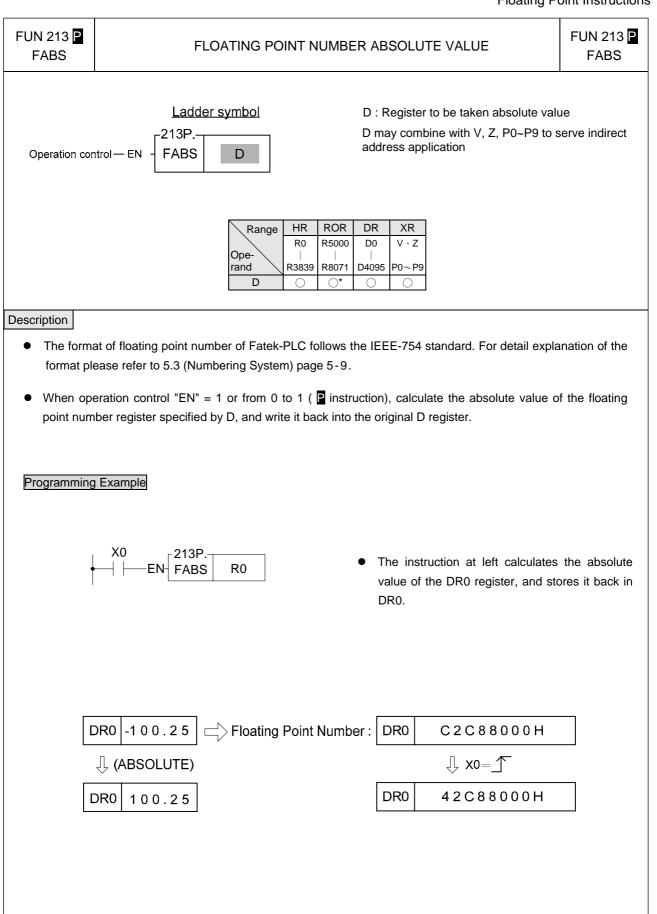


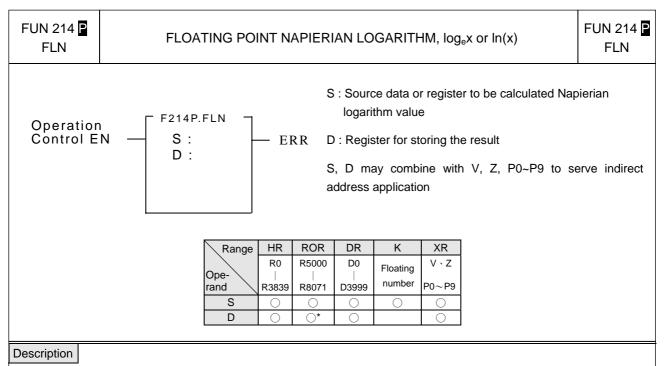

• If you want to have the compound results, such as $\geq \cdot \leq \cdot < >$ etc., please send $= \cdot <$ and > results to relay first and then combine the result from the relays.

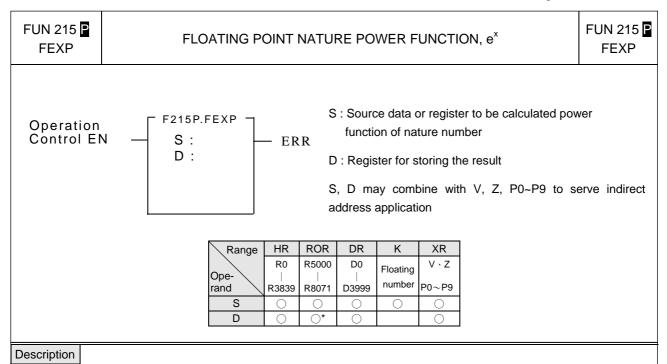



FUN 207 P FZCP	FLOATING POINT NUMBER ZONE COMPARE	FUN 207 P FZCP
Su DR12		Upper limit value) Lower limit value)
Before-ex		
	X0= \int → FLOATING ZONE COMPARE → Y0 = $\begin{bmatrix} 1 \\ & & \\ $	


Advance Function Instruction





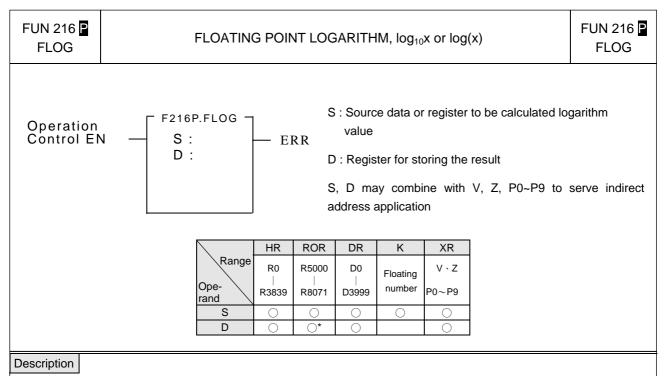


- The format of floating point number of Fatek-PLC follows the IEEE-754 standard of 32-bit.
- When operation control "EN" = 1 or from 0 to 1 (☐ instruction), take the Napierian logarithm of the data specified by the S value or S~S+1 register, and store the result into the register specified by D~D+1.
- If the value of S is negative or equal to 0 < invalid indirect addressing < or over range of the result , the error flag "ERR" will be set to 1, and not update the value of D~D+1.
- All floating point instructions can't be executed in interrupt service routine.

Exan	nple										
NOLS	M214	•	÷	•	•		—еn-Г		FLN-	M519 ERR	÷
								D :	123.45 0246 4.815836		

• When M214=1, calculate the Napierian logarithm value, it is DD246 = In (DD46)

🚧 Statu	s Monitor	ing			(
Ref. No.	Status	Data	Ref. No.	Status	Data	F 🔨
DD46	Floating	12345.6				
DD246	Floating	9.4210548				
M214	Enable	ON				
						~
<						>
\StatusP	age2/(Stat	rusPage1/				

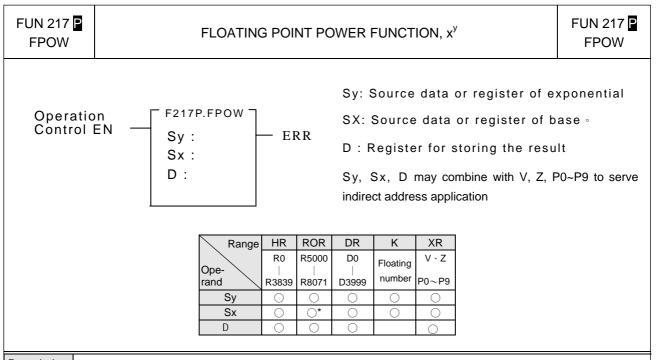

- The format of floating point number of Fatek-PLC follows the IEEE-754 standard of 32-bit.
- When operation control "EN" = 1 or from 0 to 1 (☐ instruction), calaulate the nature power function of the data specified by the S value or S~S+1 register, and store the result into the register specified by D~D+1.
- If the value of S is out of range vinvalid indirect addressing vor over range of the result, the error flag "ERR" will be set to 1, and not update the value of D~D+1.
- All floating point instructions can't be executed in interrupt service routine.

Example						
NO17 M215				-EN-	215.FEXP 5 : D48 -0.123 D : D248	M520 ERR{}
					0.88425363	

• When M215=1, calculate the nature power function, it is DD248 = e^{DD48}

Statu	s Monitor	ing				
Ref. No.	Status	Data	Ref. No.	Status	Data	F 🔨
DD48	Floating	-0.123				
DD248	Floating	0.88426363				
M215	Enable	ON				
						~
< 📖						>
\ <u>Status</u> F	Page2/(Stal	usPage1/				

Example



- The format of floating point number of Fatek-PLC follows the IEEE-754 standard of 32-bit.
- When operation control "EN" = 1 or from 0 to 1 (☐ instruction), calculate the logarithm value of the data specified by the S value or S~S+1 register, and store the result into the register specified by D~D+1.
- If the value of S is negative or equal to 0 < invalid indirect addressing < or over range of the result , the error flag "ERR" will be set to 1, and not update the value of D~D+1.
- All floating point instructions can't be executed in interrupt service routine.

L		lipie								
	NO19	M216	•	1					216.FL0G	M521
							EN-		050 0.123 0250	ERR()
			1	1	•			D:	-0.91009486	
I		1								l

• When M216=1, calculate the logarithm value, it is DD250 = log (DD50)

Ref. No.	Status	Data	Ref. No.	Status	Data	F 🔨
DD50	Floating	0.123				
DD250	Floating	-0.91009486				
M216	Enable	ON				
						~
< .						>

Description

- The format of floating point number of Fatek-PLC follows the IEEE-754 standard of 32-bit.
- When operation control "EN" = 1 or from 0 to 1 (☐ instruction), calculate the power function of the exponential data specified by the Sy s base data specified by the Sx, and store the result into the register specified by D~D+1.
- If it exists invalid indirect addressing < or over range of the result , the error flag "ERR" will be set to 1, and not update the value of D~D+1.
- All floating point instructions can't be executed in interrupt service routine.

N021	M217	•	•	•	•	•	——EN-	Sy:	217.FP0W	M522 ERR()
	l							SX	12.34 D54	
								о :	99.900002 D252	
									4.7276013e+24	

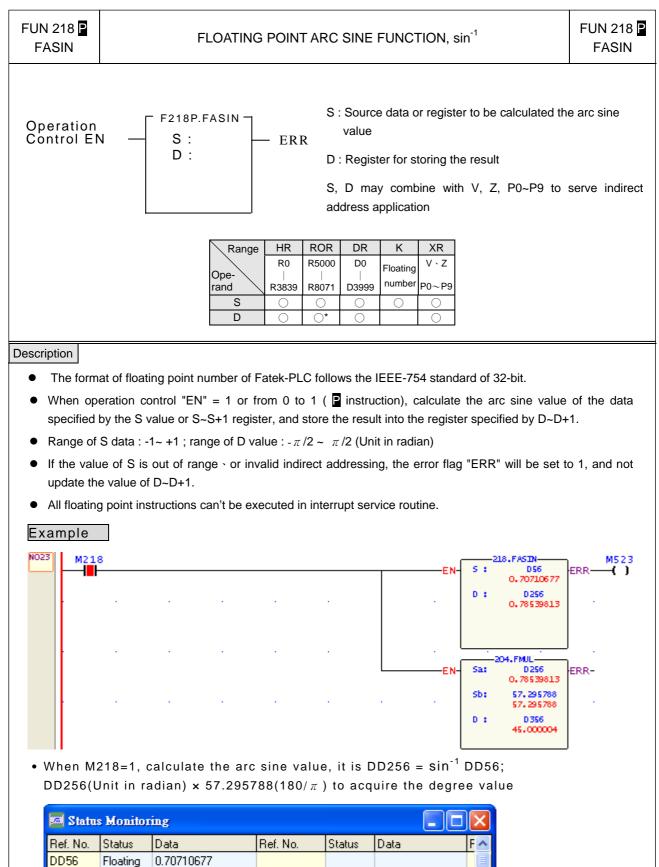
• When M217=1, calculate the power function, it is $DD252 = DD54^{DD52}$

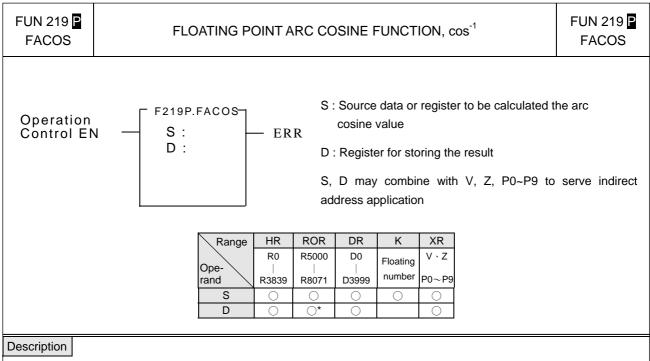
🚾 Statu	s Monitor	ing				
Ref. No.	Status	Data	Ref. No.	Status	Data	F 🔨
DD52	Floating	12.34				
DD54	Floating	99.900002				
DD252	Floating	4.7276013e+24				
M217	Enable	ON				~

DD256

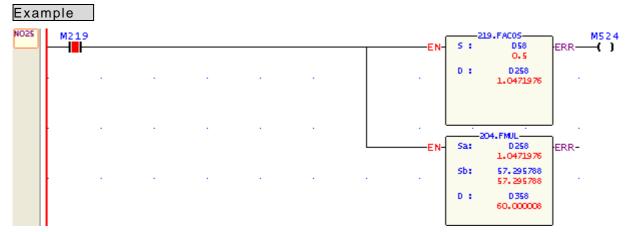
M218

DD356


Floating


Enable

Floating


0.78539813

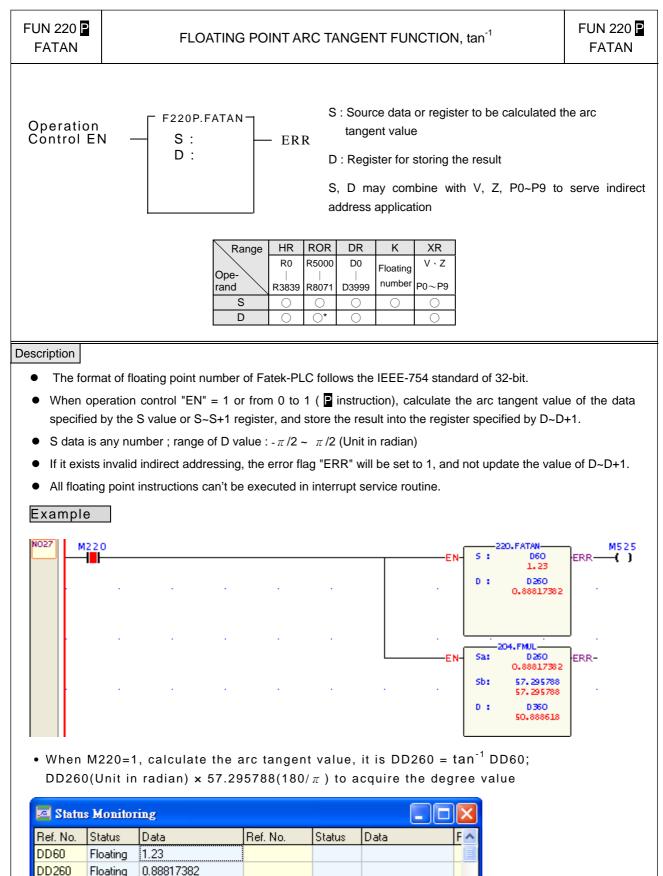
ON 45.000004

- The format of floating point number of Fatek-PLC follows the IEEE-754 standard of 32-bit.
- When operation control "EN" = 1 or from 0 to 1(P instruction), calculate the arc cosine value of the data specified by the S value or S~S+1 register, and store the result into the register specified by D~D+1.
- Range of S data : -1~ +1 ; range of D value : $0 \sim \pi$ (Unit in radian)
- If the value of S is out of range v or invalid indirect addressing, the error flag "ERR" will be set to 1, and not update the value of D~D+1.
- All floating point instructions can't be executed in interrupt service routine.

• When M219=1, calculate the arc cosine value, it is DD258 = \cos^{-1} DD58; DD258(Unit in radian) × 57.295788(180/ π) to acquire the degree value

🚾 Statu	s Monitor	ing				X
Ref. No.	Status	Data	Ref. No.	Status	Data	F 🔺
DD58	Floating	0.5				
DD258	Floating	1.0471976				
M219	Enable	ON				
DD358	Floating	60.000008				~

M220


DD360

Enable

Floating

ON

50.888618

